Skip to main content
Log in

On the evaluation codes given by simple \(\delta \)-sequences

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Plane valuations at infinity are classified in five types. Valuations in one of them determine weight functions which take values on semigroups of \({\mathbb Z}^2\). These semigroups are generated by \(\delta \)-sequences in \({\mathbb Z}^2\). We introduce simple \(\delta \)-sequences in \({\mathbb Z}^2\) and study the evaluation codes of maximal length that they define. These codes are geometric and come from order domains. We give a bound on their minimum distance which improves the Andersen–Geil one. We also give coset bounds for the involved codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abhyankar, S.S., Moh, T.T.: Newton–Puiseux expansion and generalized Tschirnhausen transformation. J. Reine Angew. Math. 260, 47–83; J. Reine Angew. Math. 261, 29–54 (1973)

  2. Abhyankar, S.S.: Lectures on Expansion Techniques in Algebraic Geometry, Tata Institute of Fundamental Research Lectures on Mathematics and Physics 57. Tata Institute of Fundamental Reserch, Bombay (1977)

    Google Scholar 

  3. Andersen, H., Geil, O.: Evaluation codes from order domain theory. Finite Fields Appl. 14, 92–123 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berlekamp, E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  5. Bras-Amorós, M., O’Sullivan, M.E.: Duality for some families of correction capability optimized evaluation codes. Adv. Math. Commun. 2, 15–33 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Campillo, A.: Algebroid Curves in Positive Characteristic. Lect. Notes in Math. 613. Springer, Berlin (1980)

  7. Campillo, A., Farrán, J.I.: Computing Weierstrass semigroups and the Feng-Rao distance from singular plane models. Finite Fields Appl. 6, 71–92 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  9. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry, 3rd edn. Springer, Berlin (2007)

    Book  Google Scholar 

  10. Duursma, I.M., Park, S.: Coset bounds for algebraic geometric codes. Finite Fields Appl. 16, 36–55 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feng, G.L., Rao, T.R.N.: Decoding of algebraic geometric codes up to the designed minimum distance. IEEE Trans. Inf. Theory 39, 37–45 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Feng, G.L., Rao, T.R.N.: A simple approach for construction of algebraic-geometric codes from affine plane curves. IEEE Trans. Inf. Theory 40, 1003–1012 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Feng, G.L., Rao, T.R.N.: Improved geometric Goppa codes, part I: basic theory. IEEE Trans. Inf. Theory 41, 1678–1693 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fitzgerald, J., Lax, R.F.: Decoding affine variety codes using Gröbner bases. Des. Codes Cryptogr. 13, 147–158 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Galindo, C., Hernando, F.: Quantum codes from affine variety codes and their subfield subcodes. Des. Codes Crytogr. 76, 89–100 (2015)

    Article  MathSciNet  Google Scholar 

  16. Galindo, C., Hernando, F., Ruano, D.: New quantum codes from evaluation and matrix-product codes. Finite Fields Appl. (2015). doi:10.1016/j.ffa.2015.07.003

  17. Galindo, C., Hernando, F., Ruano, D.: Stabilizer quantum codes from J-affine variety codes and a new Steane-like enlargement. Quantum Inf. Process. (2015). doi:10.1007/s11128-015-1057-2

  18. Galindo, C., Monserrat, F.: \(\delta \)-sequences and evaluation codes defined by plane valuations at infinity. Proc. Lond. Math. Soc. 98, 714–740 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Galindo, C., Monserrat, F.: Evaluation codes defined by finite families of plane valuations at infinity. Des. Codes Crypt. 70, 189–213 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Galindo, C., Monserrat, F.: The Abhyankar–Moh theorem for plane valuations at infinity. J. Algebra 374, 181–194 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Galindo, C., Sanchis, M.: Evaluation codes and plane valuations. Des. Codes Crypt. 41(2), 199–219 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Geil, O.: Codes based on an \({\mathbb{F}}_q\)-algebra, Ph.D. Thesis, Aalborg University, Denmark (1999)

  23. Geil, O., Høholdt, T.: On hyperbolic codes. In: Proceedings of AAECC-14, Lecture Notes in Computer Science, vol. 2227, pp. 159–171 (2001)

  24. Geil, O., Pellikaan, R.: On the structure of order domains. Finite Fields Appl. 8, 369–396 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Geil, O., Matsumoto, R., Ruano, D.: List decoding algorithms based on voting in Gröbner bases for general one-point AG codes. In: Information Theory Proceedings-ISIT- 86-90 (2012)

  26. Geil, O., Matsumoto, R., Ruano, D.: List decoding algorithms based on Gröbner bases for general one-point AG codes. In: Proceedings of 2012 IEEE International Symposium on Information theory. Cambridge, MA, USA, pp. 86–90 (2012)

  27. Geil, O., Matsumoto, R., Ruano, D.: Feng–Rao decoding of primary codes. Finite Fields Appl. 23, 35–52 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Goppa, V.D.: “Geometry and Codes”, Mathematics and Its Applications 24. Kluwer, Dordrecht (1991)

    Google Scholar 

  29. Goppa, V.D.: Codes associated with divisors. Problems Inf. Transmission 13, 22–26 (1997)

    Google Scholar 

  30. Guruswami, V., Sudan, M.: Improved decoding of Reed–Solomon and algebraic–geometry codes. IEEE Transf. Inform. Theory 45, 1757–1767 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Høholdt, T., van Lint, J.H., Pellikaan, R.: Algebraic geometry codes. Handbook of Coding Theory 1, 871–961 (1998)

    Google Scholar 

  32. Jensen, C.D.: Fast decoding of codes from algebraic geometry. IEEE Trans. Inf. Theory 40, 223–230 (1994)

    Article  Google Scholar 

  33. Justesen, J., Larsen, K.J., Jensen, H.E., Havemose, A., Høholdt, T.: Construction and decoding of a class of algebraic geometric codes. IEEE Trans. Inf. Theory 35, 811–821 (1989)

    Article  MATH  Google Scholar 

  34. Justesen, J., Larsen, K.J., Jensen, H.E., Høholdt, T.: Fast decoding of codes from algebraic plane curves. IEEE Trans. Inf. Theory 38, 111–119 (1992)

    Article  MATH  Google Scholar 

  35. Kurihara, J., Uyematsu, T., Matsumoto, R.: Secret sharing schemes based on linear codes can be precisely characterized by the relative generalized Hammimg weight. IEICE Trans. Fundam. E95–A(11), 2067–2075 (2012)

    Article  Google Scholar 

  36. Lee, K.: Unique decoding of plane AG codes revisited. J. Appl. Math. Inf. 32, 83–98 (2014)

    MATH  Google Scholar 

  37. Lee, K., Bras-Amorós, M., O’Sullivan, M.E.: Unique decoding of plane AG codes via interpolation. IEEE Trans. Inf. Theory 58, 3941–3950 (2012)

    Article  Google Scholar 

  38. Lee, K., Bras-Amorós, M., O’Sullivan, M.E.: Unique decoding of general AG codes. IEEE Trans. Inf. Theory 60, 2038–2053 (2014)

    Article  Google Scholar 

  39. Marcolla, C., Orsini, E., Sala, M.: Improved decoding of affine-variety codes. J. Pure Appl. Algebra 216, 147–158 (2012)

    Article  MathSciNet  Google Scholar 

  40. Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inform. Theory 15, 122–127 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  41. Massey, J.L., Costello, D.J., Justensen, J.: Polynomial weights and code constructions. IEEE Trans. Inform. Theory 19, 101–110 (1973)

    Article  MATH  Google Scholar 

  42. Matsumoto, R.: Miura’s generalization of one point AG codes is equivalent to Høholdt, van Lint and Pellikaan’s generalization. IEICE Trans. Fundam. E82–A(10), 2007–2010 (1999)

    Google Scholar 

  43. McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed–Solomon codes. Commun. ACM 24, 583–584 (1981)

    Article  MathSciNet  Google Scholar 

  44. MinT, Online database for optimal parameters of \((t,m, s)\)-sequences, orthogonal arrays, linear codes and OOAs. http://mint.sbg.ac.at/

  45. Pérez-Casales, R.: Ph.D. Thesis, in preparation

  46. Saints, K., Heegard, C.: On hyperbolic cascaded Reed–Solomon codes. In: Proceedings AAECCC-10, Lecture Notes in Computer Science, vol. 673, pp. 291–303 (1993)

  47. Saints, K., Heegard, C.: Algebraic-geometric codes and multidimensional cyclic codes: a unified theory and algorithms for decoding using Gröbner bases. IEEE Trans. Inf. Theory 41, 1733–1751 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  48. Sakata, S.: Extension of the Berlekamp–Massey algorithm to \(N\) dimensions. Inf. Comput. 84, 207–239 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  49. Sakata, S.: The BMS Algorithm, Gröbner Bases, Coding and Cryptography. RISC Book Series, pp. 143–163. Springer, New York (2009)

  50. Sakata, S.: The BMS Algorithm and Decoding of AG Codes, Gröbner Bases, Coding and Cryptography. RISC Book Series, pp. 165–185. Springer, Berlin (2009)

  51. Sakata, S., Jensen, J., Høholdt, T.: Generalized Berlekamp–Massey decoding of algebraic geometric codes up to half the Feng–Rao bound. IEEE Trans. Inf. Theory 41, 1762–1768 (1995)

    Article  MATH  Google Scholar 

  52. Sakata, S., Justesen, J., Madelung, Y., Jensen, H.E., Høholdt, T.: Fast decoding of algebraic geometric codes up to designed minimun distance. IEEE Trans. Inf. Theory 41, 1672–1677 (1995)

    Article  MATH  Google Scholar 

  53. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  54. Skorobogatov, A.N., Vlădut, S.G.: On the decoding of algebraic geometric codes. IEEE Trans. Inf. Theory 36, 1051–1060 (1990)

    Article  MATH  Google Scholar 

  55. Spivakovsky, M.: Valuations in function fields of surfaces. Am. J. Math. 112, 107–156 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  56. O’Sullivan, M.E.: Decoding of codes defined by a single point on a curve. IEEE Trans. Inf. Theory 41, 1709–1719 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  57. Tsfasman, M.A., Vlăduţ, S.G., Zink, T.: Modular curves, Shimura curves and Goppa codes, better than Varshamov–Gilbert bound. Math. Nachr. 109, 21–28 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  58. Zariski, O., Samuel, P.: Commutative Algebra, vol. II. Springer, New York (1960)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their valuable comments and effort to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Galindo.

Additional information

This study was supported by Spain Ministry of Economy MTM2012-36917-C03-03 and by Universitat Jaume I P1-1B2012-04.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galindo, C., Pérez-Casales, R. On the evaluation codes given by simple \(\delta \)-sequences. AAECC 27, 59–90 (2016). https://doi.org/10.1007/s00200-015-0271-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-015-0271-6

Keywords