Abstract
We study one weight \(\mathbb {Z}_2\mathbb {Z}_4\) additive codes. It is shown that the image of an equidistant \(\mathbb {Z}_2\mathbb {Z}_4\) code is a binary equidistant code and that the image of a one weight \(\mathbb {Z}_2\mathbb {Z}_4\) additive code, with nontrivial binary part, is a linear binary one weight code. The structure and possible weights for all one weight \(\mathbb {Z}_2\mathbb {Z}_4\) additive codes are described. Additionally, a lower bound for the minimum distance of dual codes of one weight additive codes is obtained.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bilal, M., Borges, J., Dougherty, S.T., Fernández-Córdoba, C.: Maximum distance separable codes over \(\mathbb{Z}_4\) and \(\mathbb{Z}_2\times \mathbb{Z}_4\). Des. Codes Cryptogr. 61, 31–40 (2011)
Bonisoli, A.: Every equidistant linear code is a sequence of dual Hamming codes. Ars Combin. 18, 181–186 (1983)
Bonnecaze, A., Duursma, I.: Translates of \(\mathbb{Z}_4\)-linear codes. IEEE Trans. Inf. Theory 43, 1218–1230 (1997)
Bonnecaze, A., Solé, P., Bachoc, C., Mourrain, B.: Type II codes over \(\mathbb{Z}_4\). IEEE Trans. Inf. Theory 43, 969–976 (1997)
Borges, J., Dougherty, S.T., Fernández-Córdoba, C.: Characterization and constructions of self-dual codes over \(\mathbb{Z}_2\times \mathbb{Z}_4\). Adv. Math. Commun. 6, 287–303 (2012)
Borges, J., Fernández-Córdoba, C., Pujol, J., Rifà, J., Villanueva, M.: \(\mathbb{Z}_2\mathbb{Z}_4\)-linear codes: generator matrices and duality. Des. Codes Cryptogr. 54, 167–179 (2010)
Borges, J., J, Rifà: A characterization of \(1\)-perfect additive codes. IEEE Trans. Inf. Theory 45, 1688–1697 (1999)
Carlet, C.: One-weight \({\mathbb{Z}}_4\)-linear codes. In: Buchmann, J., Høholdt, T., Stichtenoth, H., Tapia-Recillas, H. (eds.) Coding Theory, Cryptography and Related Areas, pp. 57–72. Springer, Berlin (2000)
Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. 10, vi+97 (1973)
Delsarte, P., Levenshtein, V.: Asociation schemes and coding theory. IEEE Trans. Inf. Theory 44, 2477–2504 (1998)
Dougherty, S.T., Fernández-Córdoba, C.: \(\mathbb{Z}_2\mathbb{Z}_4\)-additive formally self-dual codes. Des. Codes Cryptogr. 61, 31–40 (2011)
Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The \({\bf Z}_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 40, 301–319 (1994)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North Holland, Amsterdam (1977)
McDonald, B.R.: Finite Rings with Identity, Pure and Applied Mathematics, vol. 28. Marcel Dekker Inc, New York (1974)
Van Lint, J.H.: Introduction to Coding Theory, 2nd edn. Springer, New York (1992)
Wood, J.A.: The structure of linear codes of constant weight. Trans. Am. Math. Soc. 354, 1007–1026 (2002)
Yang, K., Helleseth, T., Kumar, P.V., Shanbhag, A.G.: On the weight hierarchy of Kerdock codes over \(\mathbb{Z}_4\). IEEE Trans. Inf. Theory 42, 1587–1593 (1996)
Acknowledgments
The second author thanks the Department of Mathematics, University of Scranton for their hospitality and support, where he stayed from December 2013 to February 2014. The second author was supported by NSFC through Grant No. 11171370.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dougherty, S.T., Liu, H. & Yu, L. One weight \(\mathbb {Z}_2\mathbb {Z}_4\) additive codes. AAECC 27, 123–138 (2016). https://doi.org/10.1007/s00200-015-0273-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-015-0273-4