Abstract
We show how to find s-PD-sets of the minimal size \(s+1\) for the \(\left[ \frac{q^n-q^u}{q-1},n,q^{n-1}-q^{u-1}\right] _q \) MacDonald q-ary codes \(C_{n,u}(q)\) where \(n \ge 3\) and \(1 \le u \le n-1\). The construction of [6] can be used and gives s-PD-sets for s up to the bound \(\lfloor \frac{q^{n-u}-1}{(n-u)(q-1)} \rfloor -1\), of effective use for u small; for \(u \ge \lfloor \frac{n}{2} \rfloor \) an alternative construction is given that applies up to a bound that depends on the maximum size of a set of vectors in \(V_u(\mathbb {F}_q)\) with each pair of vectors distance at least 3 apart.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Assmus, Jr., E.F., Key, J.D.: Designs and Their Codes. Cambridge University Press, Cambridge (1992), Cambridge Tracts in Mathematics, Vol. 103 (Second printing with corrections, 1993)
Bhandar, M.C., Durairajan, C.: A note on covering radius of MacDonald codes. In: Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC03) 0-7695-1916-4/03, IEEE (2003)
Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24(3/4), 235-265 (1997)
Brualdi, Richard A, Pless, Vera S: Greedy codes. J. Combin. Theory, Ser. A 64, 10-30 (1993)
Cannon, J., Steel, A., White, G.: Linear codes over finite fields. In: Cannon, J., Bosma, W. (eds.) Handbook of Magma Functions, Computational Algebra Group, V2.13, pp. 3951-4023. Department of Mathematics, University of Sydney (2006) http://magma.maths.usyd.edu.au/magma
Fish, Washiela, Key, Jennifer D., Mwambene, Eric: Partial permutation decoding for simplex codes. Adv. Math. Commun. 6, 505-516 (2012)
Gordon, Daniel M.: Minimal permutation sets for decoding the binary Golay codes. IEEE Trans. Inform. Theory 28, 541-543 (1982)
Cary Huffman, W.: Codes and groups. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, Volume 2, Part 2, Chapter 17, pp. 1345-1440. Elsevier, Amsterdam (1998)
Key, J.D., McDonough, T.P., Mavron, V.C.: Partial permutation decoding for codes from finite planes. Eur. J. Combin. 26, 665-682 (2005)
Key, J.D., McDonough, T.P., Mavron, V.C.: Information sets and partial permutation decoding for codes from finite geometries. Finite Fields Appl. 12, 232-247 (2006)
Kroll, Hans-Joachim, Vincenti, Rita: PD-sets related to the codes of some classical varieties. Discret. Math. 301, 89-105 (2005)
MacDonald, J.E.: Design methods for maximum minimum-distance error-correcting codes. IBM J. Res. Dev. 4, 43-57 (1960)
MacWilliams, F.J.: Permutation decoding of systematic codes. Bell Syst. Tech. J. 43, 485-505 (1964)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1983)
Patel, A.M.: Maximal $q$-ary linear codes with large minimum distance. IEEE Trans. Inform. Theory 21, 106-110 (1975)
Schönheim, J.: On coverings. Pac. J. Math. 14, 1405-1411 (1964)
van Zanten, A.J., Nengah Suparta, I.: On the construction of linear $q$-ary lexicodes. Des. Codes Cryptogr. 37(1), 15-29 (2005)
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
In Table 1 for \(C_{n,u}(q), q\) is a prime power, n, u as before, \(\ell \) is the length of the code, mw is the minimum weight, t is the error-correcting capability, gb is the Gordon-Schönheim bound for the size of the PD-set for full error correction, \(s_1=f_{n-u}\) (for the first construction), \(s_2\) the computationally found value of s for the second construction when \(u \ge 3\). Thus the size of the set is \(s_1+1, s_2+1\), respectively.
Rights and permissions
About this article
Cite this article
Key, J.D., Seneviratne, P. Partial permutation decoding for MacDonald codes. AAECC 27, 399–412 (2016). https://doi.org/10.1007/s00200-016-0286-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-016-0286-7