Skip to main content
Log in

The l-th power Diffie–Hellman problem and the l-th root Diffie–Hellman problem

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

There are many variants of the computational Diffie–Hellman problem that are necessary to provide security of many cryptographic schemes. Two of them are the square Diffie–Hellman problem and the square root Diffie–Hellman problem. Recently, the first and third authors proved that these two problems are polynomial-time equivalent under a certain condition (Roh and Hahn in Des Codes Cryptogr 62(2):179–187, 2011). In this paper, we generalize this result. We introduce the l-th power Diffie–Hellman problem and the l-th root Diffie–Hellman problem and show that these two problems are polynomial-time equivalent for \(l = O (\log p)\) under a condition similar to that of Roh and Hahn (2011), where p is the order of the underlying group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adleman, L., Manders, K., Miller, G.: On taking roots in finite fields. In: 18th Annual Symposium on Foundations of Computer Science, 175-178 (1977)

  2. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21, 149–177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. Lecture Notes in Computer Science, vol. 3152. Springer, Berlin (2004)

    MATH  Google Scholar 

  4. Burmester, M., Desmedt, Y., Seberry, J.: Equitable Key Escrow with Limited Time Span (or, How to Enforce Time Expiration Cryptographically). Lecture Notes in Computer Science, vol. 1514. Springer, Berlin (1998)

    MATH  Google Scholar 

  5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptol. 17, 297–319 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials from Bilinear Maps. Lecture Notes in Computer Science, vol. 3152, pp. 56–72. Springer, Berlin (2004)

    MATH  Google Scholar 

  7. Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups. Lecture Notes in Computer Science, vol. 1294, pp. 410–424. Springer, Berlin (1997)

    MATH  Google Scholar 

  8. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kiltz, E.: A Tool Box of Cryptographic Functions Related to the Diffie–Hellman Function. Lecture Notes in Computer Science, vol. 2247. Springer, Berlin (2001)

    MATH  Google Scholar 

  11. Konoma, C., Mambo, M., Shizuya, H.: Complexity analysis of the cryptographic primitive problems through square-root exponent. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E87–A, 1083–1091 (2004)

    Google Scholar 

  12. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptogrphy. CRC Press, Boca Raton (1996)

    Book  Google Scholar 

  13. Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E85–A, 481–484 (2002)

    Google Scholar 

  14. Maurer, U., Wolf, S.: Diffie–Hellman Oracles. Lecture Notes in Computer Science, pp. 268–282. Springer, Berlin (1996)

    MATH  Google Scholar 

  15. NIST: Recommended Elliptic Curves for Federal Government Use. http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf (1999)

  16. Roh, D., Hahn, S.G.: The square root Diffie–Hellman problem. Des. Codes Cryptogr. 62(2), 179–187 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shanks, D.: Five number-theoretic algorithms, In: Proceedings the Second Manitoba Conference on Numerical Mathematics, pp. 51–70 (1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Yeol Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roh, D., Kim, IY. & Hahn, S.G. The l-th power Diffie–Hellman problem and the l-th root Diffie–Hellman problem. AAECC 29, 41–57 (2018). https://doi.org/10.1007/s00200-017-0321-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-017-0321-3

Keywords

Mathematics Subject Classification

Navigation