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Abstract

In this study we determine the structure of reversible DNA codes obtained from skew cyclic
codes. We show that the generators of such DNA codes enjoy some special properties. We study
the structural properties of such family of codes and we also illustrate our results with examples.
Keywords: Skew Cyclic Codes, DNA codes, Reversible Codes.

1 Introduction

DNA is a molecule that carries most of the genetic instructions for the functions of cells. DNA sequences
consist of Adenine (A), Guanine (G), Cytosine (C), Thymine (T) nucleotides. The bases (nucleotides)
govern DNA double strings with property of Watson-Crick complement (WCC). According to WCC,
A and G are complement of T and C, respectively. This is shown as Ac =T, Tc =A, Cc =G and
Gc =C.

The interest on the structure of DNA in computations was introduced by Adleman [2] who solved
a famous NP-hard problem by using DNA molecules. Here, WCC property of DNA was used to
solve the problem. There are many of studies about DNA codes and DNA computing. Since we focus
specifically on the skew cyclic codes and DNA codes, we mention some recent and related papers about
DNA codes. In [1], DNA codes are generated by additive cyclic codes over F4. In [12] and [13] authors
used the ring F2[u]/(u

2 − 1) and obtained cyclic reversible DNA codes. In [14], DNA double bases are
considered by using the ring F2[u]/(u

4− 1) with 16 elements but authors restricted the length of DNA
codes with odd integers. In [9] and [10] (generalized form of [9]), DNA double bases are used with F16

and DNA 2s-bases by special 4s-power tables. In [3] DNA codes are generated over F4+ vF4 (v2 = v).
In this study, skew cyclic codes are used to obtain reversible DNA codes and solve the reversibility

problem. To explain the reversibility problem, we assume that (a1, a2, a3) is a codeword corresponding
to the DNA string ACAGTC where a1 →AC, a2 →AG, a3 →TC. Then, the reverse of (a1, a2, a3)
is (a3, a2, a1) and it corresponds to TCAGAC. But TCAGAC is not the reverse of ACAGTC. We
solve this problem by using θ-palindromic polynomial concept which is introduced in this work and

∗A part of this study is presented in The International Conference on Coding theory and Cryptography (ICCC2015,
Algeria).
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properties of divisors of the polynomial xn − 1 in the skew polynomial ring F42s [x; θ] for the first time.
In previous studies, DNA codes were considered over commutative rings.

2 Preliminaries and Definitions

In this section we present some basic definitions and some properties of skew cyclic codes and DNA
codes.

Definition 1. Let C be a code of length n over Fq. If cr = (cn−1, cn−2, . . . , c1, c0) ∈ C for all
c = (c0, c1, . . . , cn−1) ∈ C, then C is called a reversible code.

Let θ be an automorphism over Fq. Then, the set of polynomials Fq[x; θ] = {a0 + a1x + ... +
an−1x

n−1|ai ∈ Fq, n ∈ N} is the skew polynomial ring over Fq where addition is the usual addition of
polynomials and the multiplication is defined by xa = θ(a)x (a ∈ Fq)[8]. A skew cyclic code is defined to
be a linear code C of length n over Fq which satisfies the property that (θ(cn−1), θ(c0), ..., θ(cn−2)) ∈ C,
for all (c0, c1, ..., cn−1) ∈ C [5].

ϕ : Fn
q → Fq[x; θ]/(x

n − 1)

c = (c0, c1, . . . , cn−1) → c(x) = c0 + c1x+ . . .+ cn−1x
n−1

In polynomial representation of a code of length n, we associate a codeword c with the element
ϕ(c) = c(x) of Fq [x; θ]/(x

n − 1). In this way a skew cyclic code C of length n over Fq corresponds
to a left ideal of the quotient ring Fq[x; θ]/(x

n − 1), if the order of θ, say m, divides n [5]. If m does
not divide n, then Fq[x; θ]/(x

n − 1) is not a ring anymore. In this case the skew cyclic code C can
be considered as a left Fq[x; θ]-submodule of Fq[x; θ]/(x

n − 1) [11]. In both cases C is generated by
a monic polynomial g(x) which is a right divisor of xn − 1 in Fq[x; θ] and denoted by C = 〈g(x)〉.
Moreover if m and n are relatively prime, then C is a cyclic code over Fq [11].

Naturally skew cyclic codes are linear codes over Fq. A linear code of length n with dimension k
and minimum Hamming distance d is denoted by [n, k, d] code.

In [9] authors introduced 4-lifted polynomials over F16 to obtain reversible DNA codes. They used
Table 1 which maps each element of F16 and its 4th power to the DNA pairs which are reverses of
each other. For example α2 is mapped to the DNA pair GC and α8 is mapped to the DNA pair CG.

After that in [10] they gave an algorithm building 4s-table for the correspondence between F42s

and the DNA 2s-bases and by using the 4s-lifted polynomials they obtained reversible DNA codes.
According to this algorithm we define a map;

τ : F42s → {A,T,G,C}2s

β → (b0, b1, ..., b2s−1).

This map can be naturally extended to a map φ from Fn
42s to {A,T,G,C}2sn as follows; φ(c0, c1, ..., cn−1) =

(τ(c0), τ(c1), . . . , τ(cn−1)) where ci ∈ F42s , i ∈ {0, . . . , n−1}. For instance, φ(c0, c1, c2, c3) = φ(α2, α20,
α135, α219) = (AAAGATACCGACTAGA) in F256 where α is a primitive element of F256 (by using the
correspondence table in [10]).

Definition 2. Let C ⊆ Fn
42s . If φ(c)r ∈ φ(C) for all c ∈ C, then C or equivalently φ(C) is called a

reversible DNA code.
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Table 1: [9]
Double DNA pair F16(multiplicative) additive
AA 0 0
TT α0 1
AT α1 α
GC α2 α2

AG α3 α3

TA α4 1 + α
CC α5 α+ α2

AC α6 α2 + α3

GT α7 1 + α+ α3

CG α8 1 + α2

CA α9 α+ α3

GG α10 1 + α+ α2

CT α11 α+ α2 + α3

GA α12 1 + α+ α2 + α3

TG α13 1 + α2 + α3

TC α14 1 + α3

According to the 4s-power correspondence in [10] we observe that τ(β) and τ(β4s) are reverses
of each other for all β ∈ F42s . Thus the reverse of φ(c0, c1, . . . , cn−1) is φ(c4

s

n−1, . . . , c
4s

1 , c4
s

0 ). For

convenience, we will say that (c0, c1, . . . , cn−1) and (c4
s

n−1, . . . , c
4s

1 , c4
s

0 ) are DNA reverses of each other.

The skew polynomial ring F42s [x; θ] where θ(a) = a4
s

for all a ∈ F42s , studied in this paper, resolves
this approach naturally and proves to be more effective as it will be seen later. In both [9] and [10] the
dual codes of reversible DNA codes are not considered however, here we also study their duals too.

In this study we construct reversible DNA codes by using the skew cyclic codes over F42s . We
impose some additional properties to the generator polynomials of skew cyclic codes over F42s and
using the correspondence algorithm given in [10] we obtained reversible DNA codes directly. We also
showed that the dual codes of these skew cyclic codes are also reversible DNA codes.

Definition 3. Let f(x) = a0 + a1x + . . . + atx
t be a polynomial of degree t over Fq and θ be an

automorphism of Fq. f(x) is said to be a palindromic polynomial if ai = at−i for all i ∈ {0, 1, . . . , t},
and f(x) is said to be a θ-palindromic polynomial if ai = θ(at−i) for all i ∈ {0, 1, . . . , t}.

Definition 4. [4] The skew reciprocal polynomial of f(x) =
∑t

i=0 aix
i ∈ Fq[x, θ] of degree t is defined

as

fR(x) =

t
∑

i=0

xiat−i =

t
∑

i=0

θi(at−i)x
i.

If f(x) = fR(x), then f(x) is called a skew self reciprocal polynomial.

Lemma 1. [6] Suppose that the order of θ divides n. Let xn − 1 = h(x)g(x) in Fq[x, θ] and C be the
skew cyclic code of length n over Fq generated by g(x). Then, the dual of C is a skew cyclic code of
length n generated by hR(x), i.e. C⊥ = 〈hR(x)〉.
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We emphasize that skew self reciprocal polynomials are different than the θ-palindromic polyno-
mials. We illustrate this fact with the following example.

Example 1. Let α be a primitive element of F16 and f(x) = 1 + αx + α2x2 + α4x3 + x4 ∈ F16[x; θ]
where θ(a) = a4. Then, f(x) = fR(x) but since θ(α2) 6= α2, f(x) is not a θ-palindromic polynomial.

3 Reversible DNA codes

In this study we use the skew polynomial ring Fq [x; θ] with the automorphism θ on Fq defined by
θ(a) = a4

s

where q = 42s. Since the order of θ is 2 we note that skew cyclic codes of odd length over
Fq with respect to θ are ordinary cyclic codes ([11],Theorem 8). For this reason we investigate the
DNA reversible codes of even length and odd length separately.

3.1 Even length case

In this subsection we deal with the divisors of xn − 1 where n is even. Let C be a skew cyclic code
of length n over Fq with respect to the automorphism θ and g(x) be the monic nonzero polynomial of
minimal degree in C. Then, C is generated by g(x) and moreover g(x) is a right divisor of xn − 1 in
Fq[x; θ] (Lemma 1 in [5]). It is easily seen that the ideals 〈g(x)〉 and 〈βg(x)〉 where β ∈ F ∗

q are equal in
Fq[x; θ] and if xn − 1 = h(x)g(x), then xn − 1 = (h(x)β−1)(βg(x)) in Fq[x; θ]. Hence if g(x) is a right
divisor of xn − 1, then so is βg(x). Therefore the generating polynomial need not be monic. For the
following theorems, we take g(x) = g0 + g1x + . . .+ gmxm as the generating polynomial of C, which
is a polynomial of minimal degree in C without considering its monicness.

Theorem 1. Let g(x) be a right divisor of xn − 1 in Fq[x; θ] where deg(g(x)) = m is even. Then, the
skew cyclic code C = 〈g(x)〉 over Fq with length n is a reversible DNA code if and only if g(x) is a
palindromic polynomial.

Proof. Let g(x) be a palindromic polynomial. Recall that φ gives the correspondence of codewords in
DNA form. Reverses of each DNA codeword φ(c), for c ∈ C, are obtained by the following equation:

(

φ

(

k−1
∑

i=0

βix
ig(x)

))r

= φ

(

k−1
∑

i=0

θ(βi)x
k−1−ig(x)

)

(1)

where k = n − deg(g(x)) and βi ∈ Fq. Since
∑

i θ(βi)x
k−1−ig(x) ∈ C, then C is a reversible DNA

code.
Conversely, let C = 〈g(x)〉 be a reversible DNA code and a(x) = g−1

m g(x) = a0+a1x+. . .+am−1x
m−1+

xm where ai = g−1
m gi. Then, a(x) ∈ C is the nonzero monic polynomial of minimal degree in C. Since

c1(x) = xn−m−1a(x) = a4
s

0 xn−m−1 + a4
s

1 xn−m + . . . + a4
s

m−1x
n−2 + xn−1 ∈ C, then its DNA reverse

c2(x) = 1 + am−1x + . . .+ a1x
m−1 + a0x

m is in C. So c3(x) = a(x) − a−1
0 c2(x) = (a0 − a−1

0 ) + (a1 −
a−1
0 am−1)x+ . . .+(am−1−a−1

0 a1)x
m−1 is in C with degree less than deg(g(x)) = m, which contradicts

with the minimality of deg(g(x)) if c3(x) is nonzero. Hence

c3(x) = 0 ⇒ a0 − a−1
0 = 0 ⇒ a0 = 1,

also a1 − a−1
0 am−1 = 0 ⇒ a1 − am−1 = 0 ⇒ a1 = am−1. Continuing in this manner we obtain that

ai = am−i for all i ∈ {0, 1, . . . ,m}. So a(x) is a palindromic polynomial. Then, g(x) = gma(x) is also
a palindromic polynomial.
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Theorem 2. Let g(x) be a right divisor of xn − 1 in Fq[x; θ] where deg(g(x)) = m is odd and
C = 〈g(x)〉 be a skew cyclic code of length n over Fq. If g(x) is a θ-palindromic polynomial, then
C is a reversible DNA code. Conversely if C is a reversible DNA code, then C is generated by a
θ-palindromic polynomial.

Proof. Let g(x) be a θ-palindromic polynomial. Recall that φ gives the correspondence of codewords
in DNA form. Reverses of each DNA codeword φ(c), for c ∈ C, are obtained by the following equation:

(

φ

(

k−1
∑

i=0

βix
ig(x)

))r

= φ

(

k−1
∑

i=0

θ(βi)x
k−1−ig(x)

)

(2)

where βi ∈ Fq and k = n − deg(g(x)). Since
∑k−1

i=0 θ(βi)x
k−1−ig(x) ∈ C, then C is a reversible DNA

code.
Let C = 〈g(x)〉 be a reversible DNA code and a(x) = g−1

m g(x) = a0 + a1x+ . . .+ am−1x
m−1 + xm

where ai = g−1
m gi. Then, a(x) ∈ C is the nonzero monic polynomial of minimal degree in C. Since

c1(x) = xn−m−1a(x) = a0x
n−m−1 + a1x

n−m + . . . + am−1x
n−2 + xn−1 ∈ C, then its DNA reverse

c2(x) = 1 + a4
s

m−1x + . . . + a4
s

1 xm−1 + a4
s

0 xm ∈ C. So, c3(x) = a(x) − a−4s

0 c2(x) = (a0 − a−4s

0 ) +

(a1 − a−4s

0 a4
s

m−1)x + . . . + (am−1 − a−4s

0 a4
s

1 )xm−1 is in C with degree less than deg(g(x)) = m, this
contradicts with the minimality of deg(g(x)) if c3(x) is nonzero. Hence

c3(x) = 0 ⇒ a0 − a−4s

0 = 0 ⇒ a4
s+1

0 = 1 ⇒ a0 = α(4s−1)j

where α is a primitive element of Fq, and j is a positive integer. Also am−1 − a−4s

0 a4
s

1 = 0 ⇒ am−1 =
α(4s−1)ja4

s

1 . Continuing in this manner we obtain that

a(x) =

m−1

2
∑

i=0

(aix
i + α(4s−1)ja4

s

i xm−i) where a0 = α(4s−1)j .

Multiply a(x) with αj then,

αja(x) =

m−1

2
∑

i=0

αjaix
i + α(4s)ja4

s

i xm−i ∈ C.

Hence αja(x) = αjg−1
m g(x) is a θ-palindromic polynomial in C. Since the ideal generated by αja(x) is

equal to the ideal 〈g(x)〉 = C, we conclude that C can be generated by a θ-palindromic polynomial.

Since in this subsection we consider the even case for n, xn − 1 is in the center of the ring Fq [x; θ].
As a consequence of Lemma 7 in [6] we have the following lemma.

Lemma 2. Let xn − 1 = h(x)g(x) in Fq[x; θ]. Then, xn − 1 = g(x)h(x), i.e. any right divisor of
xn − 1 is also a left divisor in Fq[x; θ].

Theorem 3. Let xn−1 = h(x)g(x) in Fq[x; θ] where the degree of g(x) is even. If h(x) is a palindromic
polynomial, then g(x) is also a palindromic polynomial.

Proof. Let h(x) = h0 + h1x + . . . + h2kx
2k and g(x) = g0 + g1x + . . . + g2rx

2r where n = 2r + 2k.
Suppose that h(x) is a palindromic polynomial then hi = h2k−i for all i = 0, 1, . . . , k. Let ai be the

5



coefficient of xi in h(x)g(x). For any t < n/2, the coefficient of xt in h(x)g(x) is at =
∑t

j=0 hjθ
j(gt−j)

and the coefficient of xn−t is an−t =
∑t

j=0 h2k−jθ
2k−j(g2r−(t−j)).

h(x)g(x) = xn − 1 implies that a0 = an = 1 and ai = 0 for all i ∈ 1, . . . , n− 1. We will show that
gi = g2r−i for all i = 0, 1, . . . , r by induction.

For i = 0; a0 = h0θ
0(g0) = h0g0, on the other hand an = h2kθ

2k(g2r) = h2kg2r. Since a0 = an = 1
and h0 = h2k, then we have g0 = g2r.

Suppose the induction hypothesis gi = g2r−i is true for all 0 < i < l (where l < r). Now let us look
at the coefficients al and an−l;

al =

l
∑

j=0

hjθ
j(gl−j) =

l
∑

j=1

hjθ
j(gl−j) + h0gl, (3)

an−l =

l
∑

j=0

h2k−jθ
2k−j(g2r−(l−j)) =

l
∑

j=1

h2k−jθ
2k−j(g2r−(l−j)) + h2kg2r−l. (4)

Since the order of θ is 2, then θj(a) = θ2k−j(a) for all a ∈ Fq and j ∈ {1, . . . , l}. Since hj = h2k−j

and gl−j = g2r−(l−j), then we have hjθ
j(gl−j) = h2k−jθ

2k−j(g2r−(l−j)).

Therefore
∑l

j=1 hjθ
j(gl−j) =

∑l

j=1 h2k−jθ
2k−j(g2r−(l−j)). Since al = an−l = 0 we can conclude

that h0gl = h2kg2r−l = h0g2r−l. Thus gl = g2r−l. Therefore g(x) is a palindromic polynomial.

As a consequence of Lemma 2 and Theorem 3 we have the following corollary:

Corollary 1. Let xn−1 = h(x)g(x) in Fq[x; θ] where the degree of g(x) is even. If g(x) is a palindromic
polynomial, then h(x) is a palindromic polynomial.

Theorem 4. Let xn−1 = h(x)g(x) in Fq[x; θ] where the degree of g(x) is odd. If g(x) is a θ-palindromic
polynomial, then h(x) is a palindromic polynomial.

Proof. Let h(x) = h0+ h1x+ . . .+ h2k−1x
2k−1 and g(x) = g0 + g1x+ . . .+ g2r−1x

2r−1 where n = 2r+
2k− 2. Suppose that g(x) is a θ-palindromic polynomial then gi = θ(g2r−1−i) for all i = 0, 1, . . . , r− 1.
Let ai be the coefficient of xi in h(x)g(x). For any t < n/2, the coefficient of xt in h(x)g(x) is
at =

∑t

j=0 hjθ
j(gt−j) and the coefficient of xn−t is an−t =

∑t

j=0 h2k−1−jθ
2k−1−j(g2r−1−(t−j)).

h(x)g(x) = xn − 1 implies that a0 = an = 1 and ai = 0 for all i ∈ 1, . . . , n− 1. We will show that
hi = h2k−1−i for all i = 0, 1, . . . , k − 1 by induction.

For i = 0; a0 = h0θ
0(g0) = h0g0, on the other hand an = h2k−1θ

2k−1(g2r−1) = h2k−1θ(g2r−1).
Since a0 = an = 1 and g0 = θ(g2r−1), then we have h0 = h2k−1.

Suppose the induction hypothesis hi = h2k−1−i is true for all 0 < i < l (where l ≤ k − 1). Now let
us look at the coefficients al and an−l;

al =

l
∑

j=0

hjθ
j(gl−j) =

l−1
∑

j=0

hjθ
j(gl−j) + hlθ

l(g0),

an−l =

l
∑

j=0

h2k−1−jθ
2k−1−j(g2r−1−(l−j))

=
l−1
∑

j=0

h2k−1−jθ
2k−1−j(g2r−1−(l−j)) + h2k−1−lθ

2k−1−l(g2r−1).

6



Since the order of θ is 2, then θj(a) = θ2k−1−j(θ(a)) for all a ∈ Fq and j ∈ {0, . . . , l−1}. Since gl−j =
θ(g2r−(l−j)) and hj = h2k−1−j , then we have θj(gl−j) = θ2k−1−j(θ(gl−j)) = θ2k−1−j(g2r−1−(l−j)) and

hence hjθ
j(gl−j) = h2k−1−jθ

2k−1−j(g2r−1−(l−j)).

Therefore
∑l−1

j=0 hjθ
j(gl−j) =

∑l−1
j=0 h2k−1−jθ

2k−1−j(g2r−1−(l−j)). Since al = an−l = 0, we can con-
clude that hlg0 = h2k−1−lθ(g2r−1). Thus hl = h2k−1−l. Therefore h(x) is a palindromic polyno-
mial.

Theorem 5. Let h(x) be a palindromic polynomial in Fq[x; θ] of degree t.

1. If t is an odd integer, then hR(x) is a θ-palindromic polynomial.

2. If t is an even integer, then hR(x) is also a palindromic polynomial.

Proof. Let h(x) = h0 + h1x+ . . .+ ht−1x
t−1 ∈ Fq[x; θ] be a palindromic polynomial. Then, hi = ht−i

for all i = 0, 1, . . . , t− 1 and hR(x) =
∑t

i=0 aix
i =

∑t

i=0 θ
i(ht−i)x

i.

1. Suppose that t is odd. If i is an odd number, then t− i is even.

ai = θi(ht−i) = θ(ht−i) = θ(hi) and at−i = θt−i(hi) = hi.

Hence ai = θ(at−i). Similarly ai = θ(at−i) where i is even. Thus we can conclude that hR(x) is
a θ-palindromic polynomial.

2. Suppose that t is even. If i is an odd number, then t− i is also an odd number.

ai = θi(ht−i) = θ(ht−i) = θ(hi) and at−i = θt−i(hi) = θ(hi).

Thus ai = at−i. Similarly ai = at−i where i is even. Hence we obtain that hR(x) is a palindromic
polynomial.

Corollary 2. Let C be a skew cyclic code of length n over Fq with respect to the automorphism θ. If
C is a reversible DNA code, then so is C⊥.

Proof. Let C be a skew cyclic code and g(x) be a nonzero polynomial of minimal degree in C. Then C
is generated by g(x) and g(x) is a right divisor of xn−1 in Fq[x; θ] ([5]). Suppose that C is a reversible
DNA code. Then we have two cases:

1. If deg(g(x)) is an even integer, then by Theorem 1 we have g(x) is a palindromic polynomial.
If xn − 1 = h(x)g(x) in Fq[x; θ], then as a result of Corollary 1 and Theorem 5; hR(x) is a
palindromic polynomial. Hence C⊥ = 〈hR(x)〉 is a reversible DNA code, by Theorem 1.

2. If deg(g(x)) is an odd integer, then by Theorem 2; C can be generated by a θ-palindromic
polynomial g′(x) which is a scalar multiple of g(x). Therefore g′(x) is also a right divisor of
xn − 1 in Fq[x; θ]. If x

n − 1 = h′(x)g′(x) in Fq[x; θ], then as a result of Theorem 4 and Theorem
5; h′R(x) is a θ-palindromic polynomial. Hence C⊥ = 〈h′R(x)〉 is a reversible DNA code, by
Theorem 2.

7



Example 2. Let α be the primitive element of F16 where α4 = α + 1. Then, x6 − 1 = h(x)g(x) =
(1 + α7x + α7x2 + x3)(1 + α7x + α13x2 + x3) in F16[x; θ]. Since the degree of g(x) is odd and it is a
θ-palindromic polynomial thus the skew cyclic code C = 〈g(x)〉 is a reversible DNA code over F16 with
the parameters [6, 3, 4] (which is an optimal code with respect to the Singleton bound).

C⊥ is also a skew cyclic code with the generating polynomial hR(x) = 1 + α13x+ α7x2 + x3 which
is a θ-palindromic polynomial, so C⊥ is a reversible DNA code.

Example 3. Let α be the primitive element of F16 where α4 = α+ 1. Then,

x10 − 1 = h(x)g(x) = (1 + αx+ α3x2 + αx3 + x4)(1 + αx+ α11x2 + α11x4 + αx5 + x6)

in F16[x; θ]. Since the degree of g(x) is even and it is a palindromic polynomial, then the skew cyclic
code C = 〈g(x)〉 is a reversible DNA code of length 10 over F16.

The dual code of C is the skew cyclic code C⊥ = 〈hR(x)〉 = 〈(1 +α4x+α3x2 + α4x3 + x4)〉. Since
hR(x) is a palindromic polynomial of even degree, then C⊥ is also a reversible DNA code.

3.2 Odd length case

In [7], factors of xn − 1 in Fq[x; θ] are determined for the case (n,m) = 1, where m is the order of θ.
In our case q = 42s and the order of θ is 2, so the following lemma is a direct consequence of Lemma
2 in [7].

Lemma 3. Let g(x) be a right divisor of xn − 1 in F42s [x; θ], where the order of θ is 2 and n is an
odd number. Then, g(x) is a polynomial over F4s . Moreover the factorization of xn − 1 in F42s [x; θ] is
same as the factorization of xn − 1 in the commutative ring F4s [x].

As a result of this lemma; if C is a skew cyclic code of odd length over F42s with respect to
the automorphism θ, then C is an ordinary cyclic code over F42s generated by a polynomial with
coefficients from F4s . F4s is the fixed subfield of F42s under θ, since θ(β) = β4s = β for all β ∈ F4s . If
g(x) ∈ F42s [x; θ] is a palindromic polynomial with coefficients from F4s , then it is also a θ-palindromic
polynomial.

Following theorems can be easily proven by using similar arguments given in Subsection 3.1

Theorem 6. Let xn−1 = h(x)g(x) in F42s [x; θ] where n is odd. Then, the skew cyclic code C = 〈g(x)〉
of length n over F42s is a reversible DNA code if and only if g(x) is a palindromic polynomial.

Theorem 7. Let C be a skew cyclic code generated by a divisor of xn − 1 in F42s [x; θ] where n is odd.
If C is a reversible DNA code, then its dual code C⊥ is also a reversible DNA code.

Example 4. Let α be a primitive element of F16. Then, the fixed subfield under θ is F4 = {0, 1, α5, α10}.

x5 − 1 = (x− 1)(x2 + α5x+ 1)(x2 + α10x+ 1)in F16[x; θ]

Let g(x) = x2 + α10x + 1 then the skew cyclic code C = 〈g(x)〉 is both a reversible DNA code and a
reversible code over F16 with the parameters [5,3,3]. Here, h(x) = hR(x) = x3 + α10x2 + α10x + 1.
Since hR(x) is a palindromic polynomial, then the dual code C⊥ = 〈hR(x)〉 is a reversible DNA code.
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4 Conclusion

For the first time, to the best knowledge of the authors, DNA codes over non commutative rings are
explored here. The non commutativity property gives a very suitable presentation for such codes.
Different from the previous studies ([9, 10]), here we introduce a more algebraic approach provided by
the skewness of the ring in studying DNA codes. Further studies as in the case for commutative rings
are still open and interesting problems. For instance; GC content of DNA codes, DNA codes with
respect to the other distances (edit distance, similarity distance etc.) awaits to be explored.

Acknowledgement: The authors wish to thank the anonymous reviewers for their valuable re-
marks that led to an improved presentation of our original paper.
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