Skip to main content
Log in

On the Cipolla–Lehmer type algorithms in finite fields

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In this paper, we present a refinement of the Cipolla–Lehmer type algorithm given by H. C. Williams in 1972, and later improved by K. S. Williams and K. Hardy in 1993. For a given r-th power residue \(c\in \mathbb {F}_q\) where r is an odd prime, the algorithm of H. C. Williams determines a solution of \(X^r=c\) in \(O(r^3\log q)\) multiplications in \(\mathbb {F}_q\), and the algorithm of K. S. Williams and K. Hardy finds a solution in \(O(r^4+r^2\log q)\) multiplications in \(\mathbb {F}_q\). Our refinement finds a solution in \(O(r^3+r^2\log q)\) multiplications in \(\mathbb {F}_q\). Therefore our new method is better than the previously proposed algorithms independent of the size of r, and the implementation result via SageMath shows a substantial speed-up compared with the existing algorithms. It should be mentioned that our method also works for a composite r.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NIST, Digital Signature Standard, Federal Information Processing Standard 186-3, National Institute of Standards and Technology (2000) http://csrc.nist.gov/publications/fips/

  2. Adleman, L., Manders, K., Miller, G.: On taking roots in finite fields. In: Proceeding of 18th IEEE Symposium on Foundations on Computer Science (FOCS), pp. 175–177 (1977)

  3. Cao, Z., Sha, Q., Fan, X.: Adleman–Manders–Miller root extraction method revisited, (2011) arxiv:1111.4877 (preprint)

  4. Shanks, D.: Five number-theoretic algorithms, In: Proceeding of 2nd Manitoba Conference on Numerical Mathematics, Manitoba, Canada, pp. 51–70 (1972)

  5. Tonelli, A.: Bemerkung über die auflösung quadratischer congruenzen, Göttinger Nachrichten, pp. 344–346 (1891)

  6. Cipolla, M.: Un metodo per la risoluzione della congruenza di secondo grado, Rendiconto dell’Accademia Scienze Fisiche e Matematiche, Napoli, Ser. 3, Vol. IX, pp. 154–163 (1903)

  7. Lehmer, D.H.: Computer Technology Applied to the Theory of Numbers, Studies in Number Theory, pp. 117–151. Prentice-Hall, Englewood Cliffs (1969)

    Google Scholar 

  8. Bernstein, D.: Faster square root in annoying finite field (2001) http://cr.yp.to/papers/sqroot.pdf (preprint)

  9. Sutherland, A.V.: Structure computation and discrete logarithms in finite abelian \(p\)-groups. Math. Comput. 80, 477–500 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Müller, S.: On the computation of square roots in finite fields. Des. Codes Cryptogr. 31, 301–312 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Doliskani, J., Schost, E.: Taking roots over high extensions of finite fields. Math. Comput. 83, 435–446 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaltofen, E., Shoup, V.: Fast polynomial factorization over high algebraic extensions of finite fields, In: ISSAC 97, ACM, pp. 184–188 (1997)

  13. Atkin, A.O.L.: Probabilistic primality testing, summary by F. Morain, Inria research report, vol. 1779, pp. 159–163 (1992)

  14. Barreto, P., Voloch, J.: Efficient computation of roots in finite fields. Des. Codes Cryptogr. 39, 275–280 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kong, F., Cai, Z., Yu, J., Li, D.: Improved generalized Atkin algorithm for computing square roots in finite fields. Inf. Process. Lett. 98(1), 1–5 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Koo, N., Cho, G.H., Kwon, S.: Square root algorithm in \(\mathbb{F}_q\) for \(q\equiv 2^{s}+1 \,(\text{ mod } \, 2^{s+1})\). Electron. Lett. 49, 467–469 (2013)

    Article  Google Scholar 

  17. Rotaru, A.S., Iftene, S.: A complete generalization of Atkin’s square root algorithm. Fundamenta Informaticae 125, 71–94 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Pocklington, H.C.: The direct solution of the quadratic and cubic binomial congruences with prime moduli. Proc. Camb. Philos. Soc. 19, 57–59 (1917)

    MATH  Google Scholar 

  19. Heo, G., Choi, S., Lee, K.H., Koo, N., Kwon, S.: Remarks on the Pocklington and Padró-Sáez cube root algorithm in \(\mathbb{F}_q\). Electron. Lett. 50, 1002–1003 (2014)

    Article  Google Scholar 

  20. Padró, C., Sáez, G.: Taking cube roots in \(\mathbb{Z}_m\). Appl. Math. Lett. 15, 703–708 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peralta, R.C.: A simple and fast probabilistic algorithm for computing square roots modulo a prime number. IEEE Trans. Inf. Theory 32, 846–847 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Williams, H. C.: Some algorithm for solving \(x^q\equiv N \,(\text{ mod }\, p)\), In: Proceedings of 3rd Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic University), pp. 451–462 (1972)

  23. Williams, K.S., Hardy, K.: A refinement of H. C. Williams’ \(q\)th root algorithm. Math. Comput. 61, 475–483 (1993)

    MATH  Google Scholar 

  24. Cho, G.H., Koo, N., Ha, E., Kwon, S.: New cube root algorithm based on third order linear recurrence relation in finite field. Des. Codes Cryptogr. 75(3), 483–495 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  26. Kedlaya, K.S., Umans, C.: Fast polynomial factorization and modular composition. SIAM J. Comput. 40, 1767–1802 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sze, T.-W.: On taking square roots without quadratic nonresidues over finite fields. Math. Comput. 80, 1797–1811 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Johnston, A. M.: A Generalized qth Root Algorithm, In: Proceeding of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms. Baltimore, pp. 929–930 (1999)

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable suggestions and kind comments. This research was supported by the National Research Foundation of Korea (KRF) Grant funded by the Korea government (MSIP) (No. 2016R1A5A1008055). The work of Soonhak Kwon was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2016R1D1A1B03931912).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soonhak Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, G.H., Go, B., Kim, C.H. et al. On the Cipolla–Lehmer type algorithms in finite fields. AAECC 30, 135–145 (2019). https://doi.org/10.1007/s00200-018-0362-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-018-0362-2

Keywords

Mathematical Subject Classification

Navigation