Abstract
Let \(R={\mathbb {F}}_{q^2}+u{\mathbb {F}}_{q^2}+\cdots +u^{r-1}{\mathbb {F}}_{q^2}\) be a finite non-chain ring, where q is a prime power, \(u^{r}=1\) and \(r|(q+1)\). In this paper, we study u-constacyclic codes over the ring R. Using the matrix of Fourier transform, a Gray map from R to \({\mathbb {F}}_{q^2}^{r}\) is given. Under the special Gray map, we show that the image of Gray map of u-constacyclic codes over R are cyclic codes over \({\mathbb {F}}_{q^2}\), and some new quantum codes are obtained via the Gray map and Hermitian construction from Hermitian dual-containing u-constacyclic codes.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \(F_3 + vF_3\). Int. J. Quantum Inf. 12, 1450042 (2014)
Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997)
Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)
Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)
Gao, J., Wang, Y.: \(u\)-Constacyclic codes over \(F_p + uF_p\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process (2018). https://doi.org/10.1007/s11128-017-1775-8
Gao, Y., Gao, J., Fu, F.: Quantum codes from cyclic codes over the ring \(F_q + v_1F_q +\cdots +v_rF_q\). AAECC (2018). https://doi.org/10.1007/s00200-018-0366-y
Grassl, M., Rötteler, M.: Quantum MDS codes over small fields. In: Proceedings International Symposium on Information Theory, pp. 1104–1108 (2015)
Grassl M., Rötteler, M.: Quantum MDS codes over small fields (2015). Preprint arXiv:1502.05267 [quant-ph]
Hammons, JrAR, Kumar, P.V., Calderbank, A.R., Solane, N.J.A., Sol, P.: The \(Z_4\) linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inf. Theory 40, 301–319 (1994)
Han, M., Ye, Y., Zhu, S., Xu, C., Dou, B.: Cyclic codes over ring \(R=F_p + uF_p +\cdots + u^{k}F_p\) with with length \(p^sn\). Inf. Sci. 181, 926–934 (2011)
He, X.M.: Constructing new q-ary quantum MDS codes with distances bigger than \(q/2\) from generator matrices. Quantum Inf. Comput. 18, 225–232 (2018)
Kai, X., Zhu, S.: Quaternary construction of quantum codes from cyclic codes over \(F_4 + uF_4\). Int. J. Quantum Inf. 9, 689–700 (2011)
Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)
Li, F., Yue, Q.: The primitive idempotents and weight distributions of irreducible constacyclic codes. Des. Codes Cryptogr. 86, 771–784 (2018)
Ma, F., Gao, J., Fu, F.: Constacyclic codes over the ring \(F_q + vF_q + v^2F_q\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process. 17, 122 (2018). https://doi.org/10.1007/s11128-018-1898-6
Qian, J., Ma, W., Gou, W.: Quantum codes from cyclic codes over finite ring. Int. J. Quantum Inf. 7, 1277–1283 (2009)
Özen, M., Ozzaim, N.T., Ince, H.: Quantum codes from cyclic codes over \(F_3 + uF_3 + vF_3 + uvF_3\). Int. Conf. Quantum Sci. Appl. J. Phys. Conf. Ser. 766, 012020-1–012020-6 (2016)
Tang, Y., Zhu, S., Kai, X., Ding, J.: New quantum codes from dual-containing cyclic codes over finite rings. Quantum Inf. Process. 15, 4489–4500 (2016)
Acknowledgements
The authors would like to thank the editors and the anonymous reviewers for their constructive comments and suggestions. This work was supported by the National Natural Science Foundation of China under Grant 61772015.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Shi, X., Huang, X. & Yue, Q. Construction of new quantum codes derived from constacyclic codes over \({\mathbb {F}}_{q^2}+u{\mathbb {F}}_{q^2}+\cdots +u^{r-1}{\mathbb {F}}_{q^2}\). AAECC 32, 603–620 (2021). https://doi.org/10.1007/s00200-020-00415-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-020-00415-1