Abstract
For any odd positive integer n, we express cyclic codes over \({\mathbb {Z}}_4\) of length 4n in a new way. Based on the expression of each cyclic code \({\mathcal {C}}\), we provide an efficient encoder and determine the type of \({\mathcal {C}}\). In particular, we give an explicit representation and enumeration for all distinct self-dual cyclic codes over \({\mathbb {Z}}_4\) of length 4n and correct a mistake in the paper “Concatenated structure of cyclic codes over \({\mathbb {Z}}_4\) of length 4n” (Cao et al. in Appl Algebra Eng Commun Comput 10:279–302, 2016). In addition, we obtain 50 new self-dual cyclic codes over \({\mathbb {Z}}_4\) of length 28.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abualrub, T., Oehmke, R.: On the generators of \({\mathbb{Z}}_4\) cyclic codes of length \(2^e\). IEEE Trans. Inform. Theory 49, 2126–2133 (2003)
Blackford, T.: Cyclic codes over \({\mathbb{Z}}_4\) of oddly even length. Discrete Appl. Math. 128, 27–46 (2003)
Calderbank, A.R., Sloane, N.J.A.: Modular and \(p\)-adic cyclic codes. Des. Codes Cryptogr. 6, 21–35 (1995)
Calderbank, A.R., Sloane, N.J.A.: Double circulant codes over \({\mathbb{Z}}_4\) and even unimodular lattices. J. Algebraic Combin. 6, 119–131 (1997)
Cao, Y., Cao, Y., Li, Q.: Concatenated structure of cyclic codes over \({\mathbb{Z}}_4\) of length \(4n\). Appl. Algebra Eng. Commun. Comput. 10, 279–302 (2016)
Cao, Y., Cao, Y., Dougherty, S.T., Ling, S.: Construction and enumeration for self-dual cyclic codes over \({\mathbb{Z}}_4\) of oddly even length. Des. Codes Cryptogr. 87, 2419–2446 (2019)
Cao, Y.: A class of 1-generator repeated root quasi-cyclic codes. Des. Codes Cryptogr. 72, 483–496 (2014)
Cao, Y., Cao, Y., Fu, F.-W.: On self-duality and hulls of cyclic codes over \(\frac{{\mathbb{F}}_{2^m}[u]}{\langle u^k\rangle }\) with oddly even length. Appl. Algebra Eng. Commun. Comput. (2019). https://doi.org/10.1007/s00200-019-00408-9
Cao, Y., Cao, Y.: Negacyclic codes over the local ring \({\mathbb{Z}}_4[v]/\langle v^2+2v\rangle \) of oddly even length and their Gray images. Finite Fields Appl. 52, 67–93 (2018)
Cao, Y., Cao, Y.: Complete classification for simple root cyclic codes over the local ring \({\mathbb{Z}}_4[v]/\langle v^2+2v\rangle \). Cryptogr. Commun. 12, 301–319 (2020)
Dougherty, S.T., Ling, S.: Cyclic codes over \({\mathbb{Z}}_4\) of even length. Des. Codes Cryptogr. 39, 127–153 (2006)
Gaborit, P., Natividad, A.M., Solé, P.: Eisenstein lattices, Galois rings and quaternary codes. Int. J. Number Theory 2, 289–303 (2006)
Hammons Jr., A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The \({\mathbb{Z}}_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994)
Harada, M.: Self-dual \({\mathbb{Z}}_4\)-codes and Hadamard matrices. Discrete Math. 245, 273–278 (2002)
Harada, M., Kitazume, M., Munemasa, A., Venkov, B.: On some self-dual codes and unimodular lattices in dimension 48. Eur. J. Combin. 26, 543–557 (2005)
Harada, M., Miezaki, T.: An optimal odd unimodular lattice in dimension 72. Arch. Math. 97(6), 529–533 (2011)
Harada M., Solé P., Gaborit P.: Self-dual codes over \({\mathbb{Z}}_4\) and unimodular lattices: a survey. In: Algebras and Combinatorics, Hong Kong, 1997, pp. 255–275. Springer, Singapore (1999)
Kiah, H.M., Leung, K.H., Ling, S.: A note on cyclic codes over \({{\rm GR}}(p^2, m)\) of length \(p^k\). Des. Codes Cryptogr. 63, 105–112 (2012)
Jitman, S., Ling, S., Sangwisut, E.: On self-dual cyclic codes of length \(p^a\) over \({{\rm GR}}(p^2, s)\). Adv. Math. Commun. 10, 255–273 (2016)
Pless, V.S., Qian, Z.: Cyclic codes and quadratic residue codes over \({\mathbb{Z}}_4\). IEEE Trans. Inform. Theory 42, 1594–1600 (1996)
Pless, V.S., Solé, P., Qian, Z.: Cyclic self-dual \({\mathbb{Z}}_4\)-codes. Finite Fields Appl. 3, 48–69 (1997)
Shi, M., Qian, L., Sok, L., Aydin, N., Solé, P.: On constacyclic codes over \({\mathbb{Z}}_4[u]/\langle u^2-1\rangle \) and their Gray images. Finite Fields Appl. 45, 86–95 (2017)
Wan, Z.-X.: Quaternary Codes. World Scientific Pub Co Inc., Singapore (1997)
Wan, Z.-X.: Lectures on Finite Fields and Galois Rings. World Scientific Pub Co Inc., Singapore (2003)
Database of \({\mathbb{Z}}_4\) codes [online], http://www.z4codes.info. Accessed 03 Sept 2016
Acknowledgements
This research is supported in part by the National Natural Science Foundation of China (Grant Nos. 11671235, 11801324, 61971243, 61571243), the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2018BA007) and the Scientific Research Fund of Hubei Provincial Key Laboratory of Applied Mathematics (Hubei University) (Grant Nos. HBAM201906, HBAM201804), the Scientific Research Fund of Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering (No. 2018MMAEZD09) and the Nankai Zhide Foundation. Part of this work was done when Yonglin Cao was visiting Chern Institute of Mathematics, Nankai University, Tianjin, China. He would like to thank the institution for the kind hospitality.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Cao, Y., Cao, Y., Fu, FW. et al. Self-dual cyclic codes over \({\mathbb {Z}}_4\) of length 4n. AAECC 33, 21–51 (2022). https://doi.org/10.1007/s00200-020-00424-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-020-00424-0