Skip to main content
Log in

Multiple-rate error-correcting coding scheme

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Error-correcting codes that can effectively encode and decode messages of distinct lengths while maintaining a constant blocklength are considered. It is known conventionally that a k-dimensional block code of length n defined over \(\texttt {GF}(q^{n})\) is designed to encode a k-symbol user data in to an n-length codeword, resulting in a fixed-rate coding. In contrast, considering \(q=p^{\lambda }\), this paper proposes two coding procedures (for the cases of \(\lambda =k\) and \(\lambda =n\)) each deriving a multiple-rate code from existing channel codes defined over a composite field \(\texttt {GF}(q^{n})\). Formally, the proposed coding schemes employ \(\lambda\) codes \({\mathcal {C}}_{1}(\lambda , 1), {\mathcal {C}}_{2}(\lambda , 2), \ldots , {\mathcal {C}}_{\lambda }(\lambda , \lambda )\) defined over \(\texttt {GF}(q)\) to encode user messages of distinct lengths and incorporate variable-rate feature. Unlike traditional block codes, the derived multiple-rate codes of fixed blocklength n can be used to encode and decode user messages \(\mathbf{m}\) of distinct lengths \(|\mathbf{m}| = 1, 2, \ldots , k, k+1, \ldots , kn\), thereby supporting a range of information rates—inclusive of the code rates \(1/n^{2}, 2/n^{2},\ldots , k/n^{2}\) and \(1/n, 2/n, \ldots , k/n\) ! A simple decoding procedure to the derived multiple-rate code is also given; in that, orthogonal projectors are employed for the identification of encoded user messages of variable length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Birkhoff, G., Mac Lane, S.: A Survey of Modern Algebra, 5th edn. Macmillan Publishers Ltd., New York (1996)

    MATH  Google Scholar 

  2. Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  3. Goldsmith, A., Chua, S.-G.: Adaptive coded modulation for fading channels. IEEE Trans. Commn. 46(5), 595–602 (1998)

    Article  Google Scholar 

  4. Sun, Y., Karkooti, M., Cavallaro, J. R.: VLSI decoder architecture for high throughput, variable block-size and multi-rate LDPC codes. In: Proceedings of International Symposium on Circuits and Systems (ISCAS), pp. 2104–2107. New Orleans, LA (2007)

  5. Hagenauer, J.: Rate-compatible punctured convolutional codes and their application. IEEE Trans. Commun. 36, 389–400 (1988)

    Article  Google Scholar 

  6. Acikel, O., Ryan, W.: Punctured turbo-codes for BPSK/QPSK channels. IEEE Trans. Commun. 47, 1315–1323 (1999)

    Article  Google Scholar 

  7. Yazdani, M.R., Banihashemi, A.H.: On construction of rate-compatible low-density parity-check codes. IEEE Commun. Lett. 8(3), 159–161 (2004)

    Article  Google Scholar 

  8. Ha, J., Kim, J., McLaughlin, S.: Rate-compatible puncturing of low-density parity-check codes. IEEE Trans. Inf. Theory 50(11), 2824–2836 (2004)

    Article  MathSciNet  Google Scholar 

  9. Zhang, K., Ma, X., Zhao, S., Bai, B., Zhang X.: A new ensemble of rate-compatible LDPC codes. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), pp. 2536–2540. Cambridge, MA (2012)

  10. Casado, A.I.V., Weng, W.-Y., Valle, S., Wesel, R.: Multiple-rate low-density parity-check codes with constant blocklength. IEEE Trans. Commun. 57(1), 75–83 (2009)

    Article  Google Scholar 

  11. Liu, L., Zhou, W., Zhou, S.: Nonbinary multiple rate QC-LDPC codes with fixed information or block bit length. J. Commun. Netw. 14(4), 429–433 (2012)

    Article  Google Scholar 

  12. Raja Durai, R. S.: Multiple-rate maximum rank distance codes. In: Proceedings of the 14th International Symposium on Information Theory and Its Applications (ISITA), pp. 696–699. Monterey, California (2016)

  13. Gabidulin, E.M.: Theory of codes with maximum rank distance. Probl. Inf. Transm. 21, 1–12 (1985)

    MathSciNet  MATH  Google Scholar 

  14. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  15. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Techn. J. 29, 147–160 (1950)

    Article  MathSciNet  Google Scholar 

  16. Roth, R.M.: Maximum-rank array codes and their application to crisscross error correction. IEEE Trans. Inf. Theory 37, 328–336 (1991)

    Article  MathSciNet  Google Scholar 

  17. Delsarte, P.: Bilinear forms over a finite field, with applications to coding theory. J. Combin. Theory 25(3), 226–241 (1978)

    Article  MathSciNet  Google Scholar 

  18. Cooperstein, B.N.: External flats to varieties in \({\cal{M}}_{n, n}\)(GF\((q)\)). Linear Alg. Appl. 267, 175–186 (1997)

    MATH  Google Scholar 

  19. Loidreau, P.: Properties of codes in rank metric. In: Proceedings of the Eleventh International Workshop on Algebraic and Combinatorial Coding Theory, pp. 192–198. Bulgaria (2008)

  20. Gadouleau, M., Yan, Z.: On the decoder error probability of bounded rank-distance decoders for maximum rank distance codes. IEEE Trans. Inf. Theory 54(7), 3202–3206 (2008)

    Article  MathSciNet  Google Scholar 

  21. Gadouleau, M., Yan, Z.: Packing and covering properties of rank metric codes. IEEE Trans. Inf. Theory 54(9), 3873–3883 (2008)

    Article  MathSciNet  Google Scholar 

  22. Seroussi, G., Lempel, A.: Factorization of symmetric matrices and trace-orthogonal bases in finite fields. SIAM J. Comput. 9(4), 758–767 (1980)

    Article  MathSciNet  Google Scholar 

  23. Lempel, A., Weinberger, M.: Self-complementary normal bases in finite fields. SIAM J. Discret. Math. 1, 193–198 (1988)

    Article  MathSciNet  Google Scholar 

  24. Massey, J.L.: Linear codes with complementary duals. Discret. Math. 106 and 107, 337–342 (1992)

    Article  MathSciNet  Google Scholar 

  25. Raja Durai, R. S.: On linear codes with rank metric: constructions, properties, and applications. Ph.D dissertation, Department of Mathematics, Indian Institute of Technology - Chennai, India (2004)

  26. Vasantha Kandasamy, W.B., Smarandache, F., Sujatha, R., Raja Durai, R.S.: Erasure Techniques in MRD Codes. ZIP Publishing, Columbus (2012)

    MATH  Google Scholar 

  27. Raja Durai, R.S., Devi, M.: On the class of T-Direct codes over GF\((2^{{\cal{N}}})\). Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 5, 589–596 (2013)

    Google Scholar 

  28. Liu, X., Liu, H.: Rank-metric complementary dual codes. J. Appl. Math. Comput. 61, 281–295 (2019)

    Article  MathSciNet  Google Scholar 

  29. Green, D.H., Taylor, I.S.: Irreducible polynomials over composite Galois fields and their applications in coding techniques. Proc. Inst. Electr. Eng. 121, 935–939 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Devi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja Durai, R.S., Devi, M. & Kumar, A. Multiple-rate error-correcting coding scheme. AAECC 33, 117–134 (2022). https://doi.org/10.1007/s00200-020-00435-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-020-00435-x

Keywords

Mathematics Subject Classification

Navigation