Skip to main content
Log in

A new lower bound on the family complexity of Legendre sequences

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In this paper we study a family of Legendre sequences and its pseudo-randomness in terms of their family complexity. We present an improved lower bound on the family complexity of a family based on the Legendre symbol of polynomials over a finite field. The new bound depends on the Lambert W function and the number of elements in a finite field belonging to its proper subfield. Moreover, we present another lower bound which is a simplified version and approximates the new bound. We show that both bounds are better than previously known ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahlswede, R., Khachatrian, L.H., Mauduit, C., Sárközy, A.: A complexity measure for families of binary sequences. Period. Math. Hungar. 46(2), 107–118 (2003). https://doi.org/10.1023/A:1025962825241

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahlswede, R., Mauduit, C., Sárközy, A.: Large families of pseudorandom sequences of \(k\) symbols and their complexity. I. In: General theory of information transfer and combinatorics, Lecture Notes in Comput. Sci., vol. 4123, pp. 293–307. Springer, Berlin (2006). https://doi.org/10.1007/11889342_16

  3. Ahlswede, R., Mauduit, C., Sárközy, A.: Large families of pseudorandom sequences of \(k\) symbols and their complexity. II. In: General theory of information transfer and combinatorics, Lecture Notes in Comput. Sci., vol. 4123, pp. 308–325. Springer, Berlin (2006). https://doi.org/10.1007/11889342_17

  4. Aly, H., Winterhof, A.: On the \(k\)-error linear complexity over \(\mathbb{F}_{p}\) of Legendre and Sidelnikov sequences. Des. Codes Cryptogr. 40(3), 369–374 (2006). https://doi.org/10.1007/s10623-006-0023-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Balasubramanian, R., Dartyge, C., Mosaki, E.: Sur la complexité de familles d’ensembles pseudo-aléatoires. Annales de l’Institut Fourier 64(1), 267–296 (2014). https://doi.org/10.5802/aif.2847

    Article  MathSciNet  MATH  Google Scholar 

  6. Chebolu, S.K., Mináč, J.: Counting irreducible polynomials over finite fields using the inclusion-exclusion principle. Math. Mag. 84(5), 369–371 (2011). https://doi.org/10.4169/math.mag.84.5.369

    Article  MATH  Google Scholar 

  7. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert \(W\) function. Adv. Comput. Math. 5(4), 329–359 (1996). https://doi.org/10.1007/BF02124750

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding, C., Hesseseth, T., Shan, W.: On the linear complexity of Legendre sequences. IEEE Trans. Inf. Theory 44(3), 1276–1278 (1998)

    Article  MathSciNet  Google Scholar 

  9. Dummit, D.S., Foote, R.M.: Abstr. Algebra, 3rd edn. Wiley, Hoboken, NJ (2004)

    MATH  Google Scholar 

  10. Euler, L.: De serie lambertina plurimisque eius insignibus proprietatibus. Acta Academiae Scientarum Imperialis Petropolitinae 1779, 1783, pp. 29–51 6, 350–369 (1921 (orig. date 1779))

  11. Folláth, J.: Construction of pseudorandom binary sequences using additive characters over GF(\(2^k\)) II. Periodica Mathematica Hungarica 60(2), 127–135 (2010). https://doi.org/10.1007/s10998-010-2127-y

    Article  MathSciNet  MATH  Google Scholar 

  12. Gauss, C.F.: Untersuchungen über höhere Arithmetik. Deutsch herausgegeben von H. Maser. Chelsea Publishing Co., New York (1965)

    Google Scholar 

  13. Golomb, S.W., Gong, G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  14. Goubin, L., Mauduit, C., Sárközy, A.: Construction of large families of pseudorandom binary sequences. J. Number Theory 106(1), 56–69 (2004). https://doi.org/10.1016/j.jnt.2003.12.002

    Article  MathSciNet  MATH  Google Scholar 

  15. Gyarmati, K.: Concatenation of pseudorandom binary sequences. Period. Math. Hungar. 58(1), 99–120 (2009). https://doi.org/10.1007/s10998-009-9099-x

    Article  MathSciNet  MATH  Google Scholar 

  16. Gyarmati, K.: On the complexity of a family of Legendre sequences with irreducible polynomials. Finite Fields Appl. 33, 175–186 (2015). https://doi.org/10.1016/j.ffa.2014.11.004

    Article  MathSciNet  MATH  Google Scholar 

  17. Gyarmati, K., Mauduit, C., Sárközy, A.: Measures of pseudorandomness of families of binary lattices, II (a further construction). Publ. Math. Debrecen 80(3–4), 479–502 (2012). https://doi.org/10.5486/PMD.2012.5197

    Article  MathSciNet  MATH  Google Scholar 

  18. Gyarmati, K., Mauduit, C., Sárközy, A.: The cross-correlation measure for families of binary sequences, p. 126–143. Cambridge University Press (2014). https://doi.org/10.1017/CBO9781139696456.009

  19. Hofer, R., Mérai, L., Winterhof, A.: Measures of pseudorandomness: arithmetic autocorrelation and correlation measure. Number theory–Diophantine problems. Uniform distribution and applications, pp. 303–312. Springer, Cham (2017)

  20. Hoffstein, J., Lieman, D.: The distribution of the quadratic symbol in function fields and a faster mathematical stream cipher. In: Cryptography and Computational Number Theory, pp. 59–68. Birkhäuser Basel, Basel (2001)

  21. Hoorfar, A., Hassani, M.: Inequalities on the lambert w function and hyperpower function. J. Inequal. Pure and Appl. Math 9(2), 5–9 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Lidl, R., Niederreiter, H.: Finite Fields, Encyclopedia of Mathematics and its Applications, vol. 20, 2nd edn. Cambridge University Press, Cambridge (1997). With a foreword by P. M. Cohn

  23. Mauduit, C., Sárközy, A.: On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol. Acta Arith. 82(4), 365–377 (1997). https://doi.org/10.4064/aa-82-4-365-377

  24. Mauduit, C., Sárközy, A.: Family complexity and VC-dimension. In: Information Theory, Combinatorics, and Search Theory, Lecture Notes in Comput. Sci., vol. 7777, pp. 346–363. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36899-8_15

  25. Meidl, W., Winterhof, A.: On the autocorrelation of cyclotomic generators. In: Finite fields and applications, Lecture Notes in Comput. Sci., vol. 2948, pp. 1–11. Springer, Berlin (2004). https://doi.org/10.1007/978-3-540-24633-6_1

  26. Menezes, A.J., Katz, J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  27. Mullen, G.L., Panario, D. (eds.): Handbook of finite fields. Discrete Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL (2013). https://doi.org/10.1201/b15006

  28. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods, vol. 63. Siam, Philadelphia (1992)

    Book  Google Scholar 

  29. Niederreiter, H., Winterhof, A.: Applied Number Theory. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22321-6

    Book  MATH  Google Scholar 

  30. Paley, R.E.: On orthogonal matrices. Journal of Mathematics and Physics 12(1–4), 311–320 (1933)

    Article  Google Scholar 

  31. Rivat, J., Sárközy, A.: On Pseudorandom Sequences and Their Application. Springer, Berlin (2006)

    Book  Google Scholar 

  32. Sárközy, A.: A finite pseudorandom binary sequence. Studia Sci. Math. Hungar. 38, 377–384 (2001). https://doi.org/10.1556/SScMath.38.2001.1-4.28

    Article  MathSciNet  MATH  Google Scholar 

  33. Shparlinski, I.: Cryptographic applications of analytic number theory, Progress in Computer Science and Applied Logic, vol. 22. Birkhäuser Verlag, Basel (2003). https://doi.org/10.1007/978-3-0348-8037-4. Complexity lower bounds and pseudorandomness

  34. Sárközy, A.: On pseudorandomness of families of binary sequences. Discrete Appl. Math. 216, 670–676 (2017). https://doi.org/10.1016/j.dam.2015.07.031

    Article  MathSciNet  MATH  Google Scholar 

  35. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 9.0) (2020). https://www.sagemath.org

  36. Topuzoğlu, A., Winterhof, A.: Pseudorandom sequences. In: Topics in geometry, coding theory and cryptography, pp. 135–166. Springer, Berlin (2006)

  37. Turyn, R.J.: The linear generation of the Legendre sequence. SIAM J. Appl. Math. 12(1), 115 (1964)

    Article  MathSciNet  Google Scholar 

  38. Valluri, S.R., Jeffrey, D.J., Corless, R.M.: Some applications of the lambert W function to physics. Canad. J. Phys. 78(9), 823–831 (2000). https://doi.org/10.1139/p00-065

    Article  Google Scholar 

  39. Weil, A.: Sur les courbes algébriques et les variétés qui s’en déduisent. Actualités Sci. Ind., no. 1041 = Publ. Inst. Math. Univ. Strasbourg 7 (1945). Hermann et Cie., Paris (1948)

  40. Winterhof, A., Yayla, O.: Family complexity and cross-correlation measure for families of binary sequences. Ramanujan J. 39(3), 639–645 (2016). https://doi.org/10.1007/s11139-014-9649-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for the detailed and carefully prepared suggestions, which improved not only the readability but also the quality of the paper. In particular, Corollary 2 is pointed out by the reviewers. The authors are supported by the Scientific and Technological Research Council of Turkey (TÜBÏTAK) under Project No: 116R026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oğuz Yayla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakıroğlu, Y., Yayla, O. A new lower bound on the family complexity of Legendre sequences. AAECC 33, 173–192 (2022). https://doi.org/10.1007/s00200-020-00442-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-020-00442-y

Keywords

Mathematics Subject Classification

Navigation