Skip to main content
Log in

New binary associative memory model based on the XOR operation

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

An associative memory is a special type of artificial neural network that has the purpose of store input patterns with their corresponding output patterns and efficiently recall a pattern from a noise-distorted version. Presented in this article is a new framework for constructing a binary associative memory model based on two new autoinverse operations called extended XOR/XNOR; these new operations are generated from the XOR/XNOR operations, respectively. Two types of associative memory are generated with this model: the max type (XOR-AM max), which is constructed with the maximum of the extended XOR operation, and the min type (XOR-AM min), which is constructed with the minimum of the extended XNOR operation. The XOR-AM max exhibits tolerance against the presence of patterns distorted by dilative noise, whereas the XOR-AM min exhibits tolerance against the presence of patterns distorted by erosive noise; both types of memory converge in a single step, use the same extended XOR/XNOR operator for learning and recalling phases, operate in heteroassociative and autoassociative modes, and show infinite storage capacity for the autoassociative mode. Finally, computer simulation results are presented for the new memories based on the extended XOR/XNOR (XOR-AM), which have better or equal performance compared to other associative memories. For the experiments with mixed noise, the conditions established by the kernel method proposed by Ritter for Morphological Associative Memories were conserved, and the solution algorithm proposed by Hattori for the construction of the kernel patterns of these memories was modified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Acevedo, M.E., Yáñez, C., López, I.: Alpha–beta bidirectional associative memories: theory and applications. Neuronal Process. Lett. 26(1), 1–40 (2007). https://doi.org/10.1007/s11063-007-9040-2

    Article  Google Scholar 

  2. Aldape, M., Yáñez, C., Argüelles, A.J.: FPGA implementation of parallel alpha-beta associative memories. In: Campilho, A., Kamel, M. (eds.) ICIAR 2008: Image Analysis and Recognition, Lecture Notes in Computer Science, vol. 5112, pp. 1081–1090. Springer, Berlin, Heidelberg, Póvoa de Varzim, Portugal (2008). https://doi.org/10.1007/978-3-540-69812-8_108

  3. Anderson, J.A., Rosenfeld, E.: Neurocomput. Found. Res. MIT Press, Cambridge (1988)

    Google Scholar 

  4. Chung, F.L., Lee, T.: Towards a high capacity fuzzy associative memory model. In: Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94), vol. 3, pp. 1595–1599. IEEE, Orlando, FL, USA (1994). https://doi.org/10.1109/ICNN.1994.374394. https://ieeexplore.ieee.org/document/374394/

  5. Cruz, B., Sossa, H., Barrón, R.: Geometric associative processing applied to pattern classification. In: Yu, W., He, H., Zhang, N. (eds.) Advances in Neural Networks—ISNN 2009, ecture Notes in Computer Science, vol. 5552, pp. 977–985. Springer, Berlin, Heidelberg, Wuhan, China (2009). https://doi.org/10.1007/978-3-642-01510-6_111

  6. Cuninghame-Green, R.A.: Minimax algebra. In: Beckmann, M., Künzi, H.P. (eds.) Lecture Notes in Economics and Mathematical Systems, vol. 166. Springer, Berlin (1979). https://doi.org/10.1007/978-3-642-48708-8

    Chapter  Google Scholar 

  7. Feng, N., Cao, X., Li, S., Ao, L., Wang, S.: A new method of morphological associative memories. In: De-Shuang, H., Kang-Hyun, J., Hong-Hee, L., Hee-Jun, K., Vitoantonio, B. (eds.) Emerging Intelligent Computing Technology and Applications With Aspects of Artificial Intelligence. ICIC 2009, Lecture Notes in Computer Science, vol. 5755, pp. 407–416. Springer, Berlin, Heidelberg, Ulsan, South Korea (2009). https://doi.org/10.1007/978-3-642-04020-7_43. https://link.springer.com/chapter/10.1007/978-3-642-04020-7_43

  8. Feng, N., Qiu, Y., Wang, F., Sun, Y.: A unified framework of morphological associative memories. In: Huang, D.S., Li, K., Irwin, G.W. (eds.) Intelligent Control and Automation: International Conference on Intelligent Computing, Lecture Notes in Control and Information Sciences, vol. 344, pp. 1–11. Springer Berlin Heidelberg, Berlin, Heidelberg (2006). https://doi.org/10.1007/978-3-540-37256-1_1

  9. Feng, N., Yao, Y.: No rounding reverse fuzzy morphological associative memories. Neural Netw. World 26(6), 571–587 (2016). https://doi.org/10.14311/NNW.2016.26.033

    Article  Google Scholar 

  10. Graña, M.: A brief review of lattice computing. In: 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), pp. 1777–1781. IEEE, Hong Kong, China (2008). https://doi.org/10.1109/FUZZY.2008.4630611

  11. Graña, M.: Lattice computing: lattice theory based computational intelligence. In: Proceedings of Ibaraki Kosen Workshop MTE2008 “Mathematics, Technology and Education 2008”, pp. 1–9. Ibaraki National College of Technology, Ibaraki, Japan (2008). http://www.ehu.eus/ccwintco/uploads/a/a3/Lattice-computing-CI.pdf

  12. Hassoun, M.H.: Associative Neural Memories: Theory and Implementation. Oxford University Press Inc, New York (1993)

    MATH  Google Scholar 

  13. Hattori, M., Fukui, A., Ito, H.: A fast method of constructing kernel patterns for morphological associative memory. In: Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP ’02, vol. 2, pp. 1058–1063. IEEE, Singapore, Singapore (2002). https://doi.org/10.1109/ICONIP.2002.1198222

  14. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U. S. A. 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  15. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. U. S. A. 81(10), 3088–3092 (1984). https://doi.org/10.1073/pnas.81.10.3088

    Article  MATH  Google Scholar 

  16. Junbo, F., Fan, J., Yan, S.: A learning rule for fuzzy associative memories. In: IEEE World Congress on Computational Intelligence, 1994 IEEE International Conference on Neuronal Networks, vol. 7, pp. 4273–4277. IEEE, Orlando, FL, USA (1994). https://doi.org/10.1109/ICNN.1994.374953

  17. Kohonen, T.: Correlation matrix memories. IEEE Trans. Comput. C–21(4), 353–359 (1972). https://doi.org/10.1109/TC.1972.5008975

    Article  MATH  Google Scholar 

  18. Kosko, B.: Fuzzy associative memories. In: Proceedings of the 2nd Joint Technology Workshop on Neural Networks and Fuzzy Logic, vol. 1, pp. 3–58. NASA, United States, California, United States (1990). https://ntrs.nasa.gov/search.jsp?R=19910012466

  19. Liu, P.: The fuzzy associative memory of max–min fuzzy neural network with threshold. Fuzzy Sets Syst. 107(2), 147–157 (1999). https://doi.org/10.1016/S0165-0114(97)00352-7

    Article  MathSciNet  MATH  Google Scholar 

  20. Ritter, G.X., Sussner, P., Díaz de León, J.L.: Morphological associative memories. IEEE Trans. Neural Netw. 9(2), 281–293 (1998). https://doi.org/10.1109/72.661123

    Article  Google Scholar 

  21. Rosen, K.H.: Discrete Mathematics and its Applications, 5th edn. Mc Graw Hill, New York (2003)

    MATH  Google Scholar 

  22. Sossa, H., Barrón, R.: Extended \(\alpha \beta\) associative memories. Revista Mexicana de Física 53(1), 10–20 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Sossa, H., Barrón, R., Cuevas, F., Aguilar, C.: Associative gray level pattern processing using binary decomposition and \(\alpha \beta\) memories. Neural Process. Lett. 22(1), 85–111 (2005). https://doi.org/10.1007/s11063-005-2902-6

    Article  Google Scholar 

  24. Sossa, H., Barrón, R., Vázquez, R.A.: New associative memories to recall real-valued patterns. In: Sanfeliu, A., Martínez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2004, Lecture Notes in Computer Science, vol. 3287, pp. 195–202. Springer, Berlin, Heidelberg, Puebla, Mexico (2004). https://doi.org/10.1007/978-3-540-30463-0_24

  25. Steinbuch, K.: Die lernmatrix. Kybernetik 1(1), 36–45 (1961). https://doi.org/10.1007/BF00293853

    Article  MATH  Google Scholar 

  26. Sussner, P.: Observations on morphological associative memories and the kernel method. Neurocomputing 31(1–4), 167–183 (2000). https://doi.org/10.1016/S0925-2312(99)00176-9

    Article  Google Scholar 

  27. Sussner, P., Valle, M.E.: Gray-scale morphological associative memories. IEEE Trans. Neuronal Netw. 17(3), 559–570 (2006). https://doi.org/10.1109/TNN.2006.873280

    Article  Google Scholar 

  28. Sussner, P., Valle, M.E.: Implicative fuzzy associative memories. IEEE Trans. Fuzzy Syst. 14(6), 793–807 (2006). https://doi.org/10.1109/TFUZZ.2006.879968

    Article  Google Scholar 

  29. Urcid, G., Ritter, G.X.: Noise masking for pattern recall using a single lattice matrix associative memory. In: Kaburlasos, V.G., Ritter, G.X. (eds.) Computational Intelligence Based on Lattice Theory, Studies in Computational Intelligence, vol. 67, pp. 81–100. Springer Berlin Heidelberg, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72687-6_5

  30. Xiao, P., Yang, F., Yu, Y.: Max–min encoding learning algorithm for fuzzy max-multiplication associative memory networks. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 4, pp. 3674–3679. IEEE, Orlando, FL, USA (1997). https://doi.org/10.1109/ICSMC.1997.633240. https://ieeexplore.ieee.org/document/633240

  31. Yáñez, C., Díaz de León, J.L.: Associative memories based on orderings and binary operators (in Spanish). Computación y Sistemas 6(4), 300–311 (2003)

    Google Scholar 

  32. Yáñez-Márquez, C., López-Yáñez, I., Aldape-Pérez, M., Camacho-Nieto, O., Argüelles-Cruz, A.J., Villuendas-Rey, Y.: Theoretical foundations for the alpha–beta associative memories: 10 years of derived extensions, models, and applications. Neural Process. Lett. 48(2), 811–847 (2018). https://doi.org/10.1007/s11063-017-9768-2

    Article  Google Scholar 

Download references

Funding

This study is not funded by any agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Gamino Carranza.

Ethics declarations

Conflict of interest

Juan Luis Díaz de León and Arturo Gamino declares that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz de León, J.L., Gamino Carranza, A. New binary associative memory model based on the XOR operation. AAECC 33, 283–320 (2022). https://doi.org/10.1007/s00200-020-00446-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-020-00446-8

Keywords

Mathematics Subject Classification

Navigation