Skip to main content
Log in

Toward involutive bases over effective rings

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In this paper we extend the theory of involutive divisions to the case of monomials with coefficients over effective rings. Moreover, as regards involutive bases, we study the computation of weak involutive bases and sketch a conjecture on strong involutive bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. id est when, with the notation above, for each \(i,j, j> i, c_{ji}=1\) so that \(X_jX_i=X_iX_j-d_{ij}\).

  2. Which implies, but is not equivalent to, \(\mathbf{M}(h)=\mathbf{M}(f)*v\)

  3. It is well-known that the property that any monomial has at most one divisor was already shared by the original Buchberger Algorithm which reduced each term by the oldest element inclosed in the basis and thus with lower index, thus giving a unique decomposition of \(\mathbf{T}(F), F=\{g_1,\ldots ,g_u\}\) as

    $$\begin{aligned} \mathbf{T}(F)=\sqcup _{i=1}^u \mathbf{T}(g_i)\mathsf{T_i}, \text{ with } \mathsf{T_i}=\left\{ t :\, \mathbf{T}(g_i)\circ t\notin {\mathbb {I}}(\mathbf{T}(g_1),\ldots ,\mathbf{T}(g_{i-1}))\right\} . \end{aligned}$$

    A direct application of this property still within Buchberger theory has been at the center of the notion of staggered bases [17] and marked bases [3,4,5,6,7, 14]; the effort of giving a general formulation of Buchberger and Janet theory under the name of reduction structures [11], unfortunately presents a fatal flow.

    At the same time a similar decompostion was at the center of the notion of Janet-like division [20,21,22]; we propose here a decomposition in a similar framework, pointing to another potential open problem: to extend the theory of Janet-like decompositions and to produce a completion procedure in our setting adapting that stated for Janet-like division. Here we will give in Example 4 an involutive completion of the set U.

  4. id est the monoial \(\tau \in U\) such that \(M_J(\tau ,U)= \{X_1,\dots ,X_n\}\).

References

  1. Apel, J.: Gröbnerbasen in Nichetkommutativen Algebren und ihre Anwendung. Dissertation, Leipzig (1988)

  2. Apel, J.: Computational ideal theory in finitely generated extension rings. Theor. Comput. Sci. 224, 1–33 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bertone, C., Cioffi, F., Lella, P., Roggero, M.: Upgraded methods for the effective computation of marked schemes on a strongly stable ideal. J. Symb. Comput. 50, 263–290 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bertone, C., Lella, P., Roggero, M.: A Borel open cover of the Hilbert scheme. J. Symb. Comput. 53, 119–135 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bertone, C., Cioffi, F., Roggero, M.: Macaulay-like marked bases. J. Algebra Its Appl. 16(05), 1750100 (2017)

    Article  MathSciNet  Google Scholar 

  6. Bertone, C., Cioffi, F., Roggero, M.: Double-generic initial ideal and Hilbert scheme. Annali di Matematica Pura ed Applicata 196(1), 19–41 (2017)

    Article  MathSciNet  Google Scholar 

  7. Bertone, C., Cioffi, F., Roggero, M.: Smoothable Gorenstein points via marked schemes and double-generic initial ideals. Exp. Math. (2019). https://doi.org/10.1080/10586458.2019.1592034

    Article  Google Scholar 

  8. Buchberger, B.: A criterion for detecting unnecessary reduction in the construction of Gröbner bases. L. N. Comp. Sci. 72, 3–21 (1979)

    MATH  Google Scholar 

  9. Bueso, J., Gomez-Torrecillas, J., Verschoren, A.: Methods in Non-commutative Algebra. Kluwer, Dordrecht (2003)

    Book  Google Scholar 

  10. Ceria, M., Mora, T.: Buchberger–Zacharias theory of multivariate ore extensions. J. Pure Appl. Algebra 221(12), 2974–3026 (2017)

    Article  MathSciNet  Google Scholar 

  11. Ceria, M., Mora, T., Roggero, M.: Term-ordering free involutive bases. J. Symb. Comput. 68, 87–108 (2015)

    Article  MathSciNet  Google Scholar 

  12. Ceria, M.: Combinatorial decompositions for monomial ideals, submitted

  13. Ceria, M., Mora, T.: Buchberger-Weispfenning theory for effective associative rings. J. Symb. 83, 112–146 (2017)

    Article  MathSciNet  Google Scholar 

  14. Cioffi, F., Roggero, M.: Flat families by strongly stable ideals and a generalization of Gröbner bases. J. Symb. Comput. 46(9), 1070–1084 (2011)

    Article  Google Scholar 

  15. Donato, L., Traverso, C.: Experimenting the Gröbner basis algorithm with AlP I system. In: Proceedings ISSAC ’89, pp. 192–198. ACM (1989)

  16. Gebauer, R., Möller, H.M.: On an installation of Buchbgerger’s algorithm. J. Symb. Comput. 6, 275–286 (1988)

    Article  Google Scholar 

  17. Gebauer, R., Möller, H.M.: Buchberger’s algorithm and staggered linear bases. In: Proceedings of SYMSAC’86. ACM, pp. 218–221(1986)

  18. Gerdt, V.P., Blinkov, Y.A.: Involutive bases of Polynomial Ideals. Math. Comput. Simul. 45, 543–560 (1998)

    Article  MathSciNet  Google Scholar 

  19. Gerdt, V.P., Blinkov, Y.A.: Minimal involutive bases. Math. Comput. Simul. 45, 519–541 (1998)

    Article  MathSciNet  Google Scholar 

  20. Gerdt, V.P., Blinkov, Y.A.: Janet-like monomial division. In: International Workshop on Computer Algebra in Scientific Computing. Springer, Berlin (2005)

  21. Gerdt, V.P., Blinkov, Y.A.: Janet-like Groebner bases. In: International Workshop on Computer Algebra in Scientific Computing. Springer, Berlin (2005)

  22. Gerdt, V., Blinkov, Y., Yanovich, D.: Construction of Janet Bases I. Monomial Bases. In: Computer Algebra in Scientific Computing CASC, pp. 233–247 (2001)

  23. Gunther, N.: Sur les modules des formes algébriques Trudy Tbilis. Mat. Inst. 9, 97–206 (1941)

    MathSciNet  Google Scholar 

  24. Janet, M.: Sur les systèmes d’équations aux dérivées partielles. J. Math. Pure Appl. 3, 65–151 (1920)

    MATH  Google Scholar 

  25. Kandri-Rody, A., Kapur, D.: Computing the Gröbner basis of an ideal in polynomail rings over a Euclidean ring. J. Symb. Comput. 6, 37–56 (1990)

    Article  Google Scholar 

  26. Kandri-Rody, A., Weispfenning, W.: Non-commutative Gröbner Bases in Algebras of Solvable Type. J. Symb. Comput. 9, 1–26 (1990)

    Article  Google Scholar 

  27. Kredel, H.: Solvable Polynomial rings. Dissertation. Passau (1992)

  28. Levandovskyy, V.G.: Non-commutative Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and ImplementationDissertation, Kaiserslautern (2005) http://kluedo.ub.uni-kl.de/volltexte/2005/1883/

  29. Levandovskyy, V.G.: PBW Bases, Non-Degeneracy Conditions and Applications In: Buchweitz, R.-O., Lenzing, H. (Eds.), Representation of Algebras and Related Topics (Proceedings of the ICRA X Conference), 45. AMS. Fields Institute Communications, pp. 229–246

  30. Mora, F.: De Nugis Groebnerialium 4: Zacharias, Spears, Möller Proc. ISSAC’15. ACM, pp. 191–198 (2015)

  31. Mora, T.: Solving Polynomial Equation Systems 4 Vols., Cambridge University Press, I (2003), II (2005), III (2015), IV (2016)

  32. Mora, T.: Zacharias representation of effective associative rings. J. Symb. Comput. 99, 147–188 (2020)

    Article  MathSciNet  Google Scholar 

  33. Mora, T.: An introduction to commutative and noncommutative Gröbner bases. Theor. Comput. Sci. 134(1), 131–173 (1994)

    Article  Google Scholar 

  34. Möller, H.M.: On the construction of Gröbner bases using syzygies. J. Symb. Comput. 6, 345–359 (1988)

    Article  Google Scholar 

  35. Nguefack, B., Pola, E.: Effective Buchberger–Zacharias–Weispfenning theory of skew polynomial extensions of restricted bilateral coherent rings. J. Symb. Comput. (in press) https://doi.org/10.1016/j.jsc.2019.03.003

  36. Ore, O.: Theory of non-commutative polynomials. Ann. Math. 34, 480–508 (1933)

    Article  MathSciNet  Google Scholar 

  37. Pan, L.: On the D-bases of polynomial ideals over principal ideal domains. J. Symb. Comput. 7, 55–69 (1988)

    Article  MathSciNet  Google Scholar 

  38. Pesch, M.: Gröbner Bases in Skew Polynomial Rings. Dissertation, Passau (1997)

  39. Pesch, M.: Two-sided Gröbner bases in iterated ore extensions. Prog. Comput. Sci. Appl. Logic 15, 225–243 (1991)

    MATH  Google Scholar 

  40. Pritchard, F.L.: A syzygies approach to non-commutative Gröbner bases. Preprint (1994)

  41. Pritchard, F.L.: The ideal membership problem in non-commutative polynomial rings. J. Symb. Comput. 22, 27–48 (1996)

    Article  MathSciNet  Google Scholar 

  42. Reinert, B.: A systematic Study of Gröbner Basis Methods. Habilitation, Kaiserslautern (2003)

    MATH  Google Scholar 

  43. Reinert, B.: Gröbner bases in function ring—a guide for introducing reduction relations to algebraic structures. J. Symb. Comput. 41, 1264–94 (2006)

    Article  Google Scholar 

  44. Schreyer, F.O.: Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrass’schen Divisionsatz. Diplomarbait, Hamburg (1980)

    Google Scholar 

  45. Schreyer, F.O.: A standard basis approach to syzygies of canonical curves. J. Reine Angew. Math. 421, 83–123 (1991)

    MathSciNet  MATH  Google Scholar 

  46. Schwartz, F.: Reduction and completion algorithm for partial differential equations. In: Proceedings of ISSAC’92. ACM, pp. 49–56 (1992)

  47. Seiler, W.M.: A combinatorial approach to involution and \(\delta \)-Regularity I: involutive bases in polynommial algebras of solvable type. J. AAECC 20, 207–259 (2009)

    Article  Google Scholar 

  48. Spear, D.A.: A constructive approach to commutative ring theory. In: Proceedings of the 1977 MACSYMA Users’ Conference, NASA CP-2012 , pp. 369–376 (1977)

  49. Tamari, D.: On a certain classification of rings and semigroups. Bull. Am. Math. Soc. 54, 153–158 (1948)

    Article  MathSciNet  Google Scholar 

  50. Weispfenning, V.: Finite Gröbner bases in non-noetherian skew polynomial rings. In: Proceedings of ISSAC’92. ACM, pp. 320–332 (1992)

  51. Zacharias, G.: Generalized Gröbner bases in commutative polynomial rings, Bachelor’s thesis, MIT (1978)

  52. Zarkov, A.: Solving zero-dimensional involutive systems. Prog. Math. 143, 389–399 (1996)

    MathSciNet  Google Scholar 

  53. Zarkov, A., Blinkov, Y.: Involution approach to investing polynomial systems. Math. Comput. Simul. 42, 323–332 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Ceria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research has been partially funded by GNSAGA—Istituto Nazionale di Alta Matematica “Francesco Severi”. The first author is thankful to this institution for its support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceria, M., Mora, T. Toward involutive bases over effective rings. AAECC 31, 359–387 (2020). https://doi.org/10.1007/s00200-020-00448-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-020-00448-6

Keywords

Mathematics Subject Classification

Navigation