Abstract
In this paper we derive formulas for the scalar multiplication by n map, denoted [n], on the Hessian model of elliptic curve. This enables to characterize n-torsion points on this curve. The computation involves three families of polynomials \(P_n\), \(Q_n\) and \(V_n\) and we show some properties on the coefficients and degrees of these polynomials. We also show some functional equations satisfied by these polynomials. As application we provide a type of mean-value theorem for the Hessian elliptic curve.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bogomolov, F., Fu, H.: Elliptic curves with large intersection of projective torsion points. Eur. J. Math. 4(2), 555–560 (2018)
Bogomolov, F., Fu, H., Tschinkel, Y.: Torsion of elliptic curves and unlikely intersections. Geom. Phys. Festschr. Honour of Nigel Hitchin 1(2), 19–38 (2018)
Bogov, F., Fu, H.: Division polynomials and intersection of projective torsion points. Eur. J. Math. 2(3), 644–660 (2016)
Burhanuddin, I., Huang, M.: Elliptic curve torsion points and division polynomials. Comput. Asp. Algebr. Curves 13, 13–37 (2005)
Dimitrov, V., Mishra, P.: Efficient quintuple formulas for elliptic curves and efficient scalar multiplication using multibase number representation. In: International Conference on Information Security, pp. 390–406 (2007)
Doliskani, J.: On division polynomial pit and supersingularity. Appl. Algebra Eng. Commun. Comput. 29(5), 393–407 (2018)
Farashahi, R.R., Joye, M.: Efficient arithmetic on hessian curves. In: Public Key Cryptography—PKC 2010, 13th International Conference on Practice and Theory in Public Key Cryptography, Paris, France, May 26–28, 2010. Proceedings, pp. 243–260 (2010)
Feng, R., Wu, H.: A mean value formula for elliptic curves. J. Numbers 2014, 1–5 (2014)
Fouotsa, E.: Parallelizing pairings on hessian elliptic curves. Arab. J. Math. Sci. 25(1), 555–579 (2019). https://doi.org/10.1016/j.ajmsc.2018.06.001
Garcia-Selfa, J., Olalla, M., Tornero, J.: Computing the rational torsion of an elliptic curve using tate normal form. J. Number Theory 96(96), 76–88 (2002)
Giorgi, P., Izard, I.: Optimizing elliptic curve scalar multiplication for small scalars. In: In Mathematics for Signal and Information Processing Proceedings, p. 7444N (2009)
Gonzalez, J.: On the division polynomials of elliptic curves, contributions to the algorithmic study of problems of arithmetic moduli. Rev. R. Acad. Cienc. Exactas F’is. Nat 94(3), 377–381 (2000)
González-Jiménez, E., Álvaro, L.-R.: On the torsion of rational elliptic curves over quartic fields. Math. Comput. 87(311), 1457–1478 (2017)
Gu, H., Gu, D., Xie, W.: Efficient pairing computation on elliptic curves in hessian form. In: Information Security and Cryptology—ICISC 2010—13th International Conference, Seoul, Korea, December 1–3, 2010, Revised Selected Papers, pp. 169–176 (2010)
Joye, M., Quisquater, J.: Hessian elliptic curves and side-channel attacks. In: Cryptographic Hardware and Embedded Systems—CHES 2001, Third International Workshop, Paris, France, May 14–16, 2001, Proceedings, Generators, pp. 402–410 (2001)
Luis, D., Enrique, G.J., Jimenezurroz, J.: On fields of definition of torsion points of elliptic curves with complex multiplication. In: Proceedings of the American Mathematical Society, vol. 139 (2009)
McKee, J.: Computing division polynomials. Math. Comput. 63(208), 17–23 (2010)
Miret, J., Moreno, R., Rio, A., Valls, M.: Computing the l-power torsion of an elliptic curve over a finite field. Math. Comput. 78(267), 1767–1786 (2009)
Moloney, R., McGuire, G.: Two kinds of division polynomials for twisted edwards curves. Appl. Alg. Eng. Com. Comp. 22, 321–345 (2011)
Moody, D.: Division polynomials for Jacobi quartic curves, pp. 265–272 (2011). https://doi.org/10.1145/1993886.1993927
Moody, D.: Divison polynomials for alternate models of elliptic curves. Cryptology ePrint Archive, Report 2010/630 (2010). https://eprint.iacr.org/2010/630
Nagell, T.: Solution de quelque problemes dans la theorie arithmetique des cubiques planes du premier genre. Wid. Akad. Skrifter Oslo I, Nr 1 (1935)
Najman, F.: Torsion of rational elliptic curves over cubic fields and sporadic points on x1(n). Math. Res. Lett. 23(1), 245–272 (2016)
Perez, F.L., Fouotsa, E.: Analogue of vélu’s formulas for computing isogenies over hessian model of elliptic curves. Cryptology ePrint Archive, Report 2019/1480 (2019). https://eprint.iacr.org/2019/1480
Perez, F.L., Fouotsa, E.: http://www.emmanuelfouotsa-prmais.org/Portals/22/Algo_hess_divpol.ipynb.zip
Sadornil, D.: A note on factorisation of division polynomials (2006)
Schoof, R.: Elliptic curves over finite fields and the computation of square roots mod p. Math. Comput. 44(170), 483–494 (1985)
Smart, N.P.: The Hessian form of an elliptic curve. In: Cryptographic Hardware and Embedded Systems—CHES 2001, Third International Workshop, Paris, France, May 14–16, 2001, Proceedings, Generators, pp. 118–125 (2001)
Smith, H.: Ramification in the division fields of elliptic curves and an application to sporadic points on modular curves (2018)
Ulas, M.: On torsion points on an elliptic curves via division polynomials. Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica 1285 (2005)
Verdure, H.: Factorisation patterns of division polynomials. Proc. Jpn. Acad. Ser. A Math. Sci. 80(5), 79–82 (2004)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fouazou Lontouo, P., Fouotsa, E. & Tieudjo, D. Division polynomials on the Hessian model of elliptic curves. AAECC 34, 1–16 (2023). https://doi.org/10.1007/s00200-020-00470-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-020-00470-8