Abstract
Let \(\gamma = 4z-1\) be an unit of Type \((*^{-})\) of the Galois ring \({{\,\mathrm{GR}\,}}(2^a, m)\). The \(\gamma\)-constacyclic codes of length \(2^s\) over the Galois ring \({{\,\mathrm{GR}\,}}(2^a, m)\) are precisely the ideals \(\langle (x +1)^i \rangle\), \(0 \le i \le 2^sa\) of the chain ring \(\mathfrak {R}(a,m, \gamma ) = \dfrac{{{\,\mathrm{GR}\,}}(2^a,m)[x]}{\langle {x^{2^s}} - \gamma \rangle }\). This structure is used to determine the symbol pair distance of \(\gamma\)-constacyclic codes of length \(2^s\) over \({{\,\mathrm{GR}\,}}(2^a, m)\). The exact symbol-pair distances for all such \(\gamma\)-constacyclic codes of length \(2^s\) over \({{\,\mathrm{GR}\,}}(2^a, m)\) are obtained. Also, we provide the MDS symbol-pair codes of length \(2^s\) over \({{\,\mathrm{GR}\,}}(2^a, m)\) and some examples are computed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abualrub, T., Oehmke, R.: On the generators of \({\mathbb{Z}}_{4}\) cyclic codes of length \(2^e\). IEEE Trans. Inf. Theory 49, 2126–2133 (2003)
Berman S.D., Semisimple cyclic and Abelian codes. II, Kibernetika (Kiev) 3, 21–30 (1967) (in Rus-sian); English translation: Cybernetics 3, 17-23 (1967)
Calderbank, A.R., Hammons, A.R., Kumar, P.V., Sloane, N.J.A., Solé, P.: A linear construction for certain Kerdock and Preparata codes. Bull. Am. Math. Soc. 29, 218–222 (1993)
Cassuto, Y., Blaum, M.: Codes for symbol-pair read channels. In: Conference in Proceedings IEEE International Symposium Information Theory, Austin, pp. 988–992 (2010)
Cassuto, Y., Blaum, M.: Codes for symbol-pair read channels. IEEE Trans. Inf. Theory 57, 8011–8020 (2011)
Cassuto, Y., Litsyn, S.: Symbol-pair codes: algebraic constructions and asymptotic bounds. In: Conference in Proceedings IEEE International Symposium on Information Theory, St. Petersburg, Russia, pp. 2348–2352 (2011)
Chen, B., Lin, L., Liu, H.: Constacyclic symbol-pair codes: lower bounds and optimal constructions. arXiv:1605.03460 (2016)
Chee, Y.M., Ji, L., Kiah, H.M., Wang, C., Yin, J.: Maximum distance separable codes for symbol-pair read channels. IEEE Trans. Inf. Theory 59, 7259–7267 (2013)
Castagnoli, G., Massey, J.L., Schoeller, P.A., von Seemann, N.: On repeated-root cyclic codes. IEEE Trans. Inform. Theory 37, 337–342 (1991)
Calderbank, A.R., Sloane, N.J.A.: Modular and \(p\)-adic codes. Des. Codes Cryptogr. 6, 21–35 (1995)
Ding, B., Zhang, T., Ge, G.: Maximum distance separable codes for b-symbol read channels. Finite Fields Their Appl. 49, 180–197 (2018)
Dinh, H.Q.: On some classes of repeated-root constacyclic codes of length a power of 2 over Galois rings. In: Trends Math, pp. 131–147 (2010)
Dinh, H.Q., Vo, T.M.: Repeated-root cyclic and negacyclic codes of prime power lengths with a finite commutative chain ring alphabet. East West J. Math. 13, 207–224 (2011)
Dinh, H.Q.: Repeated-root constacyclic codes of prime power length. AMS Contemp. Math. 480, 87–100 (2009)
Dinh, H.Q., Nguyen, B.T., Singh, A.K., Sriboonchitta, S.: On the symbol-pair distance of repeated-root constacyclic codes of prime power lengths. IEEE Trans. Inform. Theory (2017). https://doi.org/10.1109/TIT.2017.2726691
Dinh, H.Q.: Constacyclic codes of length \(2^s\) over Galois extension rings of \({\mathbb{F}}_{2} + u{\mathbb{F}}_{2}\). IEEE Trans. Inform. Theory 55, 1730–1740 (2009)
Dinh, H.Q., López-Permouth, S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inform. Theory 50, 1728–1744 (2004)
Dinh, H.Q.: Constacyclic codes of length \(p^s\) over ring \(\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}\). J. Algebra 324, 940–950 (2010)
Dinh, H.Q.: Repeated root constacyclic codes of length \(2^s\) over \({\mathbb{Z}}_{2}^{a}\). In: Algebra and Its Applications. Contemporary Mathematics American Mathematical Society, vol. 419, pp. 95–110 (2006)
Dinh, H.Q.: Complete distances of all negacyclic codes of length \(2^s\) over \({{\mathbb{Z}}}_{2^{a} }\). IEEE Trans. Inform. Theory 53, 147–161 (2007)
Dinh, H.Q.: Negacyclic codes of length \(2^s\) over Galois rings. IEEE Trans. Inf. Theory 51, 4252–4262 (2005)
Dinh, H.Q., Liu, H., Liu, X., Sriboonchitta, S.: On structure and distances of some classes of repeated-root constacyclic codes over Galois rings. Finite Fields Appl. 43, 86–105 (2017)
Dinh, H.Q.: On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions. Finite Fields Appl. 14, 22–40 (2008)
Dinh, H.Q.: Structure of some classes of repeated-root constacyclic codes over integers modulo \(2^m\). Ser. Lect. Notes Pure Appl. Math. 248, 105–117 (2006)
Falkner, G., Kowol, B., Heise, W., Zehendner, E.: On the existence of cyclic optimal codes. Atti Semin. Mat. Fis. Univ. Modena 28, 326–341 (1979)
Hirotomo, M., Takita, M., Morii, M.: Syndrome decoding of symbol-pair codes. In: Conference in Proceedings IEEE Information Theory Workshop, Hobart, pp. 162–166 (2014)
Hammons Jr., A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The \({\mathbb{Z}}_{4}\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 40, 301–319 (1994)
Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)
Kai, X., Zhu, S., Li, P.: A construction of new MDS symbol-pair codes. IEEE Trans. Inf. Theory 61, 5828–5834 (2015)
McDonald B.R.: Finite rings with identity. In: Pure and Applied Mathematics, vol. 28. Marcel Dekker, New York (1974)
Massey, J.L., Costello, D.J., Justesen, J.: Polynomial weights and code constructions. IEEE Trans. Inf. Theory 19, 101–110 (1973)
Nedeloaia, C.S.: Weight distributions of cyclic self-dual codes. IEEE Trans. Inf. Theory 49, 1582–1591 (2003)
Pless, V., Huffman, W.C.: Handbook of Coding Theory. Elsevier, Amsterdam (1998)
Roth, R.M., Seroussi, G.: On cyclic MDS codes of length qover GF(q). IEEE Trans. Inf. Theory 32, 284–285 (1986)
Sălăgean, A.: Repeated-root cyclic and negacyclic codes over finite chain rings. Discrete Appl. Math. 154, 413–419 (2006)
Tang, L., Soh, C.B., Gunawan, E.: A note on the q-ary image of a \(q^m\)-ary repeated-root cyclic code. IEEE Trans. Inf. Theory 43, 732–737 (1997)
Van Lint, J.H.: Repeated-root cyclic codes. IEEE Trans. Inform. Theory 37, 343–345 (1991)
Wan, Z.: Cyclic codes over Galois rings. Algebra Colloq. 6, 291–304 (1999)
Yaakobi, E., Bruck, J., Siegel, P.H.: Decoding of cyclic codes over symbol-pair read channels. In: Conference in Proceedings International Symposium Information Theory, Cambridge, pp. 2891–2895 (2012)
Yaakobi, E., Bruck, J., Siegel, P.H.: Constructions and decoding of cyclic codes over b-symbol read channels. IEEE Trans. Inf. Theory 62, 1541–1551 (2016)
Yaakobi, E., Bruck, J., Siegel, P.H.: Decoding of cyclic codes over symbol-pair read channels. In: Conference in Proceedings of International Symposium Information Theory, Cambridge, pp. 2891–2895 (2012)
Acknowledgment
This work is a part of Ph.D. thesis of Manoj Kumar Singh. The authors are grateful to the anonymous reviewers for helpful comments to improve the manuscript. This work was supported in part by the Centre of Excellence in Econometrics, Faculty of Economics, Chiang Mai University, Thailand.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dinh, H.Q., Kumar, N., Singh, A.K. et al. On the symbol-pair distance of some classes of repeated-root constacyclic codes over Galois ring. AAECC 34, 111–128 (2023). https://doi.org/10.1007/s00200-020-00472-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-020-00472-6