Abstract
Let \((S,\le )\) be a strictly totally ordered monoid and R an \((S,\omega )\)-weakly rigid ring, where \(\omega :S\rightarrow End(R)\) is a monoid homomorphism. In this paper, we study the weakly p.q.-Bear property of the skew generalized power series ring \(R[[S,\omega ]]\). As a consequence, the weakly p.q.-Baer property of the skew power series ring \(R[[x;\alpha ]]\) and the skew Laurent power series ring \(R[[x,x^{-1};\alpha ]]\) are determined, where \(\alpha\) is a ring endomorphism of R.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Annin, S.: Associated primes over skew polynomial rings. Commun. Algebra 30(5), 2511–2528 (2002)
Bessenrodt, C., Brungs, H.H., Törner, G.: Right chain rings, Part 1, Schriftenreihe des Fachbereichs Math., vol. 181, Duisburg Univ. (1990)
Birkenmeier, G.F.: Idempotents and completely semiprime ideals. Commun. Algebra 11(6), 567–580 (1983)
Birkenmeier, G.F., Kim, J.Y., Park, J.K.: Principally quasi-Baer rings. Commun. Algebra 29(2), 639–660 (2001)
Cheng, Y., Huang, F.K.: A note on extensions of principally quasi-Baer rings. Taiwan. J. Math. 12(7), 1721–1731 (2008)
Clark, W.E.: Twisted matrix units semigroup algebras. Duke Math. J. 34(3), 417–424 (1967)
Cohn, P.M.: Free Rings and Their Relations, 2nd edn. Academic Press, London (1985)
Hashemi, E., Moussavi, A., Nasr-Isfahani, A.R.: Skew power series extensions of principally quasi-Baer rings. Stud. Sci. Math. Hungar. 45(4), 469–481 (2008)
Hashemi, E., Moussavi, A.: Polynomial extensions of quasi-Baer rings. Acta Math. Hungar. 107, 207–224 (2005)
Hirano, Y.: On annihilator ideals of a polynomial ring over a noncommutative ring. J. Pure Appl. Algebra 168(1), 45–52 (2002)
Hong, C. Y., Kim, N. K., Kwak, T. K.: Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra, 151(3), 215-226 (2000)
Kaplansky, I.: Rings of Operators. Benjamin, New York (1968)
Lam, T.Y.: A First Course in Noncommutative Rings. Springer, New York (1991)
Lam, T.Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics, vol. 189. Springer, New York (1999)
Liu, Z.K.: A note on principally quasi-Baer rings. Commun. Algebra 30(8), 3885–3890 (2002)
Liu, Z.K.: Baer rings of generalized power series. Glasg. Math. J. 44(3), 463–469 (2002)
Liu, Z.K.: Triangular matrix representations of rings of generalized power series. Acta Math. Sinica (English Series) 22, 989–998 (2006)
Liu, Z.K., Zhao, R.: A generalization of PP-rings and p.q.-Baer rings. Glasg. Math. J. 48(2), 217–229 (2006)
Majidinya, A., Moussavi, A.: On APP skew generalized power series rings. Stud. Sci. Math. Hungar. 50(4), 436–453 (2013)
Majidinya, A., Moussavi, A.: Weakly principally quasi-Baer rings, J. Algebra Appl., 15(1), https://doi.org/10.1142/S021949881650002X(2016)
Manaviyat, R., Moussavi, A., Habibi, M.: Principally quasi-Baer skew power series rings. Comm. Algebra 38(6), 2164–2176 (2010)
Marks, G., Mazurek, R., Ziembowski, M.: A unified approach to various generalizations of Amendariz rings. Bull. Austral. Math. Soc. 81, 361–397 (2010)
Mazurek, R., Ziembowski, M.: On von Neumann regular rings of skew generalized power series. Commun. Algebra 36(5), 1855–1868 (2008)
Nasr-Isfahani, A.R., Moussavi, A.: On weakly rigid rings. Glasg. Math. J. 51(3), 425–440 (2009)
Paykan, K., Mousavi, A.: Differential extensions of weakly principally quasi-baer rings. Acta Math. Vietnam. 44, 977–991 (2018)
Ribenboim, P.: Semisimple rings and von Neumann regular rings of generalized power series. J. Algebra 198(2), 327–338 (1997)
Rickart, C.E.: Banach algebras with an adjoint operation. Ann. Math. 47(3), 528–550 (1946)
Tominaga, H.: On \(s\)-unital rings. Math. J. Okayama Univ. 18(2), 117–134 (1976)
Tuganbaev, A.A.: Some Ring and Module Properties of Skew Laurent Series. Formal Power Series and Agebraic combinatorics (Moscow), pp. 613–622. Springer, Berlin (2000)
Varadarajan, K.: Generalized power series modules. Commun. Algebra 29(3), 1281–1294 (2001)
Zhao, R.: Left APP-rings of skew generalized power series. J. Algebra Appl. 10(5), 891–900 (2011)
Zhao, R., Liu, Z.K.: Special properties of modules of generalized power series. Taiwan. J. Math. 12(2), 447–461 (2008)
Acknowledgements
We are thankful to Professor André Leroy and the referees for their valuable comments and suggestions that have greatly improved the presentation of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Majidinya, A., Moussavi, A. Weakly principally quasi-Baer skew generalized power series rings. AAECC 32, 409–425 (2021). https://doi.org/10.1007/s00200-021-00499-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-021-00499-3
Keywords
- Skew generalized power series ring
- Weakly principally quasi-Baer ring
- Weakly rigid ring
- s-unital ideal