Abstract
Let \(K={\mathbb {Q}}(\zeta _8)\) be the complex multiplication field over \({\mathbb {Q}}\) of extension degree 4. We give an integral lattice construction on \({\mathbb {Q}}(\zeta _8)\) induced from binary codes. We define a theta series using these lattices and discuss its relation with the complete weight enumerator of a binary code. If C is a binary Type II code of length l, we find that the complete weight enumerator of C gives a Jacobi form of weight l and the index 2l over the maximal totally real subfield \(k={\mathbb {Q}}(\zeta _8+\zeta _8^{-1})\) of K. Also, we see that Hilbert-Siegel modular form of weight l and genus g can be seen in terms of the complete joint weight enumerator for codes \(C_j\), \(1\le j\le g\) over \({\mathbb {F}}_2\).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ankur. Self-dual codes over the ring GR \((p^m, g)\) and Jacobi forms. Asian Eur. J. Math. 10, 1750055 (2017)
Ankur and Kewat, P. K.: Type I and Type II codes over the ring \({F }_ 2+ u {F }_ 2+ v {F }_2+uv{F }_ 2\). Asian Eur. J. Math. 12(2), 1950025 (2019)
Bachoc, C.: Applications of coding theory to the construction of modular lattices. J. Comb. Theory Ser. A 78(1), 92–119 (1997)
Bannai, E., Dougherty, S.T., Harada, M., Oura, M.: Type II codes, even unimodular lattices, and invariant rings. IEEE Trans. Inf. Theory 45(4), 1194–1205 (1999)
Betsumiya, K., Choie, Y.: Jacobi forms over totally real fields and Type II codes over Galois rings GR\((2^m, f)\). Eur. J. Comb. 25(4), 475–486 (2004)
Betsumiya, K., Choie, Y.: Codes over \({{\mathbb{F}}}_4\), Jacobi forms and Hilbert-Siegel modular forms over \({\mathbb{Q}}\). Eur. J. Comb. 26(5), 629–650 (2005)
Choie, Y., Dougherty, S.T.: Codes over rings, complex lattices and Hermitian modular forms. Eur. J. Comb. 26(2), 145–165 (2005)
Choie, Y., Jeong, E.: Jacobi forms over totally real fields and codes over \({{\mathbb{F}}}_p\). Ill. J. Math. 46(2), 627–643 (2002)
Choie, Y., Kim, H.: Codes over \({{\mathbb{Z}}}_{2m}\) and Jacobi forms of genus\(n\). J. Comb. Theory Ser. A 95(2), 335–348 (2001)
Choie, Y., Kim, N.: The complete weight enumerator of Type II code over \({{\mathbb{Z}}}_{2m}\) and Jacobi forms. IEEE Trans. Inf. Theory 47(1), 5397 (2001)
Ebeling, W.: Lattices and codes. A course partially based on lectures by F. Hirzebruch. In Lattices and Codes. Springer, (2013)
Eichler, M., Zagier, D.: The Theory of Jacobi Forms. Springer, Berlin (1985)
Gritsenko, V.A.: The action of modular operators on the Fourier-Jacobi coefficients of modular forms. Sbornik Math. 47(1), 237–267 (1984)
Haverkamp, K.K.: Hermitian Jacobi forms. Results Math. 29(1–2), 78–89 (1996)
Kositwattanarerk, W., Ong, S.S., Oggier, F.: Wiretap encoding of lattices from number fields using codes over \({{\mathbb{F}}}_p\). In: IEEE international symposium on information theory, pp. 2612–2616 (2013)
MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. Elsevier, Amsterdam (1977)
Serre, J.P.: A Course in Mathematics, vol. 7. Springer Science & Business Media, Berlin (2012)
Skogman, H.: Jacobi forms over totally real number fields. Results Math. 39(1–2), 169–182 (2001)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ankur, Kewat, P.K. Binary self-dual codes and Jacobi forms over a totally real subfield of \({\mathbb {Q}}(\zeta _8)\). AAECC 34, 377–392 (2023). https://doi.org/10.1007/s00200-021-00509-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-021-00509-4