Skip to main content
Log in

Two-valued cross correlation distributions between binary m sequences and their decimation sequences

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Let l be an odd prime with \(l\equiv 1\pmod 4\), \(N=l^m\) a positive integer, \({\text {ord}}_N(2)=f\), and \(q=2^f\), where \(f=\phi (N)/t\) and \(\phi (\cdot )\) is the Euler’s function. Let \(\{u_i\}=({\text {Tr}}_{q/2}(\omega ^i))_{i=0}^{q-2}\) be a binary sequence of period \(q-1\), where \(\omega \) is a primitive element of a finite field \(\mathbb F_{q}\). In this paper, we obtain two-valued cross correlation distributions between two sequences \(\{u_i\}\) and their \(\frac{q-1}{N}\)-decimation sequences in two cases: \(t=2\) and \(t=4\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Canteaut, A., Charpin, P., Dobbertin, H.: Binary \(m\)-sequences with three-valued crosscorrelation: a proof of Welch’s conjecture. IEEE Trans. Inf. Theory 46(1), 4–8 (2000)

  2. Cusick, T., Dobbertin, H.: Some new three-valued crosscorrelation functions for binary \(m\)-sequences. IEEE Trans. Inf. Theory 42(4), 1238–1240 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Choi S., Kim J., No J.: On the cross-correlation of a \(p\)-ary \(m\)-sequence and its decimated sequences by \(d = \frac{p^m+1}{p^k+1}+\frac{p^m-1}{2} \). IEICE Trans. Commun. E96-B(9), 2190-2197 (2013)

  4. Dobbertin, H., Felke, P., Helleseth, T., Rosendahl, P.: Niho type crosscorrelation functions via Dickson polynomials and Kloosterman sums. IEEE Trans. Inf. Theory 52(2), 613–627 (2006)

    Article  MATH  Google Scholar 

  5. Ding, C., Helleseth, T.: Several classes of binary sequences with three-level autocorrelation. IEEE Trans. Inf. Theory 45(7), 2606–2612 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dobbertin, H., Helleseth, T., Vijay, Kumar P., Martinsen, H.: Ternary \(m\)-sequences with three-valued cross-correlation function: new decimations of Welch and Niho type. IEEE Trans. Inf. Theory 47(4), 1473–1481 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Golomb, S., Gong, G.: Signal design for good correlation: for wireless communication, cryptography, and radar. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  8. Heng, Z., Ding, C., Zhou, Z.: Minimal linear codes over finite fields. Finite Fields Appl. 54, 176–196 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Helleseth, T., Kumar, P.V.: Sequences with low correlation. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of coding theory, pp. 1765–1853. Elsevier Science, The Netherlands (1998)

    Google Scholar 

  10. Hu, Z., Li, X., Mills, D., Müller, E., Sun, W., Willems, W., Yang, Y., Zhang, Z.: On the cross correlation of sequences with the decimation factor \(d = \frac{p^n+1}{p -1}-\frac{p^n-1}{2}\). Appl. Alg. Eng. Commun. Comput. 12(3), 255–263 (2001)

    Article  MATH  Google Scholar 

  11. Helleseth, T., Rosendahl, P.: New pairs of \(m\)-sequences with \(4\)-level cross-correlation. Finite Fields Appl. 11, 674–683 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Heng, Z., Wang, W., Wang, Y.: Projective binary linear codes from special Boolean functions. Appl. Alg. Eng. Commun. Comput. (2020). https://doi.org/10.1007/s00200-019-00412-z

    Article  MATH  Google Scholar 

  13. Ireland, K., Rosen, M.: A classical introduction to modern number theory. Graduate Texts in Mathematics, 2nd edn. Springer-Verlag, New York (1990)

    Book  MATH  Google Scholar 

  14. Katz, D.: Weil sums of binomials, three-level cross-correlation, and a conjecture of Helleseth. J. Comb. Theory Ser. A 119(8), 1644–1659 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Luo, J.: Binary sequences with three-valued cross correlations of different lengths. IEEE Trans. Inf. Theory 62(12), 7532–7537 (2016)

    Article  MathSciNet  Google Scholar 

  16. Li, C., Yue, Q., Li, F.: Weight distributions of cyclic codes with respect to pairwise coprime order elements. Finite Fields Appl. 28, 94–114 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Myerson, G.: Period polynomials and Gauss sums for finite fields. Acta Arith. 39, 251–264 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Müller, E.: On the cross correlation of sequences over \(GF (p)\) with short periods. IEEE Trans. Inf. Theory 45(1), 289–295 (1999)

    Article  MATH  Google Scholar 

  19. Mullen, G.L., Panario, D.: Handbook of finite fields. Series on discrete mathematics and its applications, CRC, Boca Raton (2013)

    Book  MATH  Google Scholar 

  20. Ness, G.J., Helleseth, T., Kholosha, A.: On the correlation distribution of the Coulter-Matthews decimation. IEEE Trans. Inf. Theory 52(5), 2241–2247 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu, Y., Yue, Q., Shi, X., Zhu, X.: Binary and ternary sequences with a few cross correlations. Cryptogr. Commun. 12, 511–525 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xia Y., Chen S.: Cross-Correlation Distribution between a \(p\)-Ary \(m\)-Sequence and Its Decimated Sequence with Decimation Factor \(d= \frac{(p^{m}+1)^2}{2(p^e+1)}\). IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 97-A(5), 1103-1112 (2014)

  23. Xia, Y., Li, C., Zeng, X., Helleseth, T.: Some results on cross-correlation distribution between a \(p\)-Ary \(m\)-sequence and its decimated sequences. IEEE Trans. Inf. Theory 60(11), 7368–7381 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xia, Y., Li, N., Zeng, X., Helleseth, T.: An open problem on the distribution of a Niho-type cross-correlation function. IEEE Trans. Inf. Theory 62(12), 7546–7554 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xia, Y., Li, N., Zeng, X., Helleseth, T.: On the correlation distribution for a Niho decimation. IEEE Trans. Inf. Theory 63(11), 7206–7218 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xia, Y., Zeng, X., Hu, L.: Further cross correlation properties of sequences with the decimation factor \(d=\frac{p^m+1}{p+1}-\frac{p^m-1}{2}\). Appl. Algebra Eng. Commun. Comput. 21(5), 329–342 (2010)

    Article  MATH  Google Scholar 

  27. Zhang, T., Li, S., Feng, T., Ge, G.: Some new results on the cross correlation of \(m\)-sequences. IEEE Trans. Inf. Theory 60(5), 3062–3068 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zeng, X., Liu, J., Hu, L.: Generalized Kasami sequences: the large set. IEEE Trans. Inf. Theory 53(7), 2587–2598 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhou, Z., Ding, C.: A family of five-weight cyclic codes and their weight enumerators. IEEE Trans. Inf. Theory 59(10), 6674–6682 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhou, Z., Zhang, A., Ding, C.: The weight enumerator of three families of cyclic codes. IEEE Trans. Inf. Theory 59(9), 6002–6009 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers and the Editor for their valuable suggestions that much improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengwei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The paper was supported by National Natural Science Foundation of China under Grants 12171420, 62172219, and Foundation of QingTan scholars of Zaozhuang University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Yue, Q. & Liu, F. Two-valued cross correlation distributions between binary m sequences and their decimation sequences. AAECC 34, 1013–1025 (2023). https://doi.org/10.1007/s00200-021-00535-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-021-00535-2

Keywords

Mathematics Subject Classification