Skip to main content
Log in

Distance-regular graphs and new block designs obtained from the Mathieu groups

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In this paper we construct distance-regular graphs admitting a vertex transitive action of the five sporadic simple groups discovered by E. Mathieu, the Mathieu groups \(M_{11}\), \(M_{12}\), \(M_{22}\), \(M_{23}\) and \(M_{24}\). From the binary code spanned by an adjacency matrix of the strongly regular graph with parameters (176,70,18,34) we obtain block designs having the full automorphism groups isomorphic to the Higman-Sims finite simple group. Moreover, from that code we obtain eight 2-designs having the full automorphism group isomorphic to \(M_{22}\), whose existence cannot be explained neither by the Assmus-Mattson theorem nor by a transitivity argument. Further, we discuss a possibility of permutation decoding of the codes spanned by adjacency matrices of the graphs constructed and find small PD-sets for some of the codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Assmus, E.F., Jr., Mattson, H.F., Jr.: New 5-designs. J. Combinatorial Theory A 6, 122–151 (1969)

    Article  MathSciNet  Google Scholar 

  2. Bailey, R.F., Bray, J.N.: Decoding the Mathieu group \(M_{12}\). Adv. Math. Commun. 1, 477–487 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bose, R.C., Shimamoto, T.: Classification and analysis of partially balanced incomplete block designs with two associate classes. J. Amer. Statist. Assoc. 47, 151–184 (1952)

    Article  MathSciNet  Google Scholar 

  4. Bosma, W., Cannon, J.: Handbook of Magma Functions, Department of Mathematics, University of Sydney (1994). http://magma.maths.usyd.edu.au/magma

  5. Brouwer, A.E.: Strongly Regular Graphs, in: C. J. Colbourn, J. H. Dinitz (Eds.), Handbook of Combinatorial Designs, \(2^{\rm nd}\) ed., Chapman & Hall/CRC, Boca Raton, pp. 852–868 (2007)

  6. Brouwer, A.E.: Parameters of Strongly Regular Graphs. Available at http://www.win.tue.nl/\(\sim\)aeb/graphs/srg/srgtab.html, Accessed on 24/02/2021

  7. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer-Verlag, Berlin (1989)

    Book  Google Scholar 

  8. Cameron, P.J.: Coherent configurations, association schemes and permutation groups, Groups, combinatorics & geometry (Durham, 2001), 55–71. World Sci. Publ, River Edge, NJ (2003)

    Google Scholar 

  9. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, Eynsham (1985)

    Google Scholar 

  10. Crnković, D., Mikulić Crnković, V., Švob, A.: Block designs and strongly regular graphs admitting a transitive action of the Mathieu group \(M_{11}\). Australas. J. Combin. 73, 149–161 (2019)

    MathSciNet  Google Scholar 

  11. Crnković, D., Mikulić Crnković, V., Švob, A.: On some transitive combinatorial structures constructed from the unitary group \(U(3,3)\). J. Statist. Plann. Inference 144, 19–40 (2014)

    Article  MathSciNet  Google Scholar 

  12. Crnković, D., Rukavina, S., Švob, A.: New strongly regular graphs from orthogonal groups \(O^+(6,2)\) and \(O^-(6,2)\). Discrete Math. 341, 2723–2728 (2018)

    Article  MathSciNet  Google Scholar 

  13. Crnković, D., Rukavina, S., Švob, A.: On some distance-regular graphs with many vertices. J. Algebraic Combin. 51, 641–652 (2020)

    Article  MathSciNet  Google Scholar 

  14. van Dam, E.R., Koolen, J.H., Tanaka, H.: Distance-Regular Graphs, Electron. J. Combin., DS22, Dynamic Survey, 156 pp (2016)

  15. The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.0 (2020). (http://www.gap-system.org)

  16. Gordon, D.M.: Minimal permutation sets for decoding the binary Golay codes. IEEE Trans. Inform. Theory 28, 541–543 (1982)

    Article  MathSciNet  Google Scholar 

  17. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  18. Key, J.D., McDonough, T.P., Mavron, V.C.: Improved partial permutation decoding for Reed-Muller codes. Discrete Math. 340, 722–728 (2017)

    Article  MathSciNet  Google Scholar 

  19. Key, J.D., Rodrigues, B.G.: Minimal PD-sets for codes associated with the graphs \(Q_2^m\), \(m\) even, Appl. Algebra Engrg. Comm. Comput., (to appear)

  20. Kramer, E.S., Magliveras, S.S., Mesner, D.M.: \(t\)-designs from large Mathieu groups. Discrete Math. 36, 171–189 (1981)

    Article  MathSciNet  Google Scholar 

  21. Lempken, W.: Two new symmetric 2-(144,66,30) designs, preprint (1999)

  22. MacWilliams, F.J.: Permutation decoding of systematic codes. Bell System Tech. J. 43, 485–505 (1964)

    Article  Google Scholar 

  23. MacWilliams, F.J., Sloane ,N.J.A.: The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford (1977)

  24. Mathieu, E.: Memoire sur le nombre de valeurs que peut acqu erir une function quand on y permut ses variables de toutes le maniere possibles. J. de Math. Pure et App. 5, 9–42 (1860)

    Google Scholar 

  25. Mathieu, E.: Memoire sur l‘etude des functions de plusieures quantites, sur la maniere des formes et sur les substitutions qui laissent invariables. J. de Math. Pure et App. 6, 241–323 (1861)

    Google Scholar 

  26. Mathieu, E.: Sur la function cinq fois transitive des 24 quantites. J. de Math. Pure et App. 18, 25–46 (1873)

    Google Scholar 

  27. Mikulić Crnković, V., Traunkar, I.: Self-orthogonal codes constructed from weakly self-orthogonal designs invariant under an action of \(M_{11}\), Appl. Algebra Engrg. Comm. Comput., to appear

  28. Moori, J., Rodrigues, B.G., Saeidi, A., Zandi, S.: Some symmetric designs invariant under the small Ree groups. Comm. Algebra 47, 2131–2148 (2019)

    Article  MathSciNet  Google Scholar 

  29. Pless, V.: On a new family of symmetry codes and related new five-designs. Bull. Am. Math. Soc. 75, 1339–1342 (1969)

    Article  MathSciNet  Google Scholar 

  30. Pless, V.: Symmetry codes over GF(3) and new five-designs, J. Comb. Theory, Ser. A 12, 119–142 (1972)

  31. Pless, V.S., Huffman, W.C.: Handbook of Coding theory, North Holland, Amsterdam (1998)

  32. Praeger, C.E., Soicher, L.H.: Low Rank Representations and Graphs for Sporadic Groups, Australian Mathematical Society Lecture Series 8. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  33. Robinson, D.: A Course in the Theory of groups. Springer-Verlag, New York, Berlin, Heidelberg (1996)

    Book  Google Scholar 

  34. Soicher, L.H.: Yet another distance-regular graph related to Golay code, Electronic J. Combin. 2, N1, 4pp (1995)

  35. Tonchev, V.D.: Combinatorial Configurations: Designs, Codes, Graphs. John Willey & Sons, New York (1988)

    Google Scholar 

  36. Wielandt, H.: Finite Permutation Groups. Academic Press, New York (1964)

    Google Scholar 

  37. Wilson, R.A.: The finite simple groups. Springer-Verlag, London (2009)

    Book  Google Scholar 

  38. Wirth, W.: Konstruktion symmetrischer Designs, PhD thesis, Johannes Gutenberg-Universität Mainz (2000)

Download references

Acknowledgements

The authors would like to thank Sven Reichard for pointing out that the graphs \(\Gamma _3^1\) and \(\Gamma _5^2\) constructed in this paper are not arising from orthogonal arrays, and to the anonymous referee for helpful comments and suggestions.

Funding

This work has been fully supported by Croatian Science Foundation under the project 6732.

Author information

Authors and Affiliations

Authors

Contributions

This is a joint collaboration with all three authors contributing substantially throughout.

Corresponding author

Correspondence to Dean Crnković.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this Appendix we give short description of the procedure which was used for obtaining the results described in this paper. The procedures follow the method described in Section 3.

figure b

Procedures:

ActionGcosets(class) - function that defines transitive permutation representation of the group G;

BaseBlock(x) - function that calculates the orbit of the subgroups under the action;

SelfPaired(x), MutuallyPaired(x) - functions that check whether the orbits are self-paired or mutually paired;

DesignGraph(x) - function that takes the base block, builds 1-designs which incidence matrices are adjacency matrices of regular graphs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crnković, D., Mostarac, N. & Švob, A. Distance-regular graphs and new block designs obtained from the Mathieu groups. AAECC 35, 177–194 (2024). https://doi.org/10.1007/s00200-022-00542-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-022-00542-x

Keywords

Mathematics Subject Classification

Navigation