Abstract
Kostant’s weight q-multiplicity formula is an alternating sum over a finite group known as the Weyl group, whose terms involve the q-analog of Kostant’s partition function. The q-analog of the partition function is a polynomial-valued function defined by \(\wp _q(\xi )=\sum _{i=0}^k c_i q^i\), where \(c_i\) is the number of ways the weight \(\xi\) can be written as a sum of exactly i positive roots of a Lie algebra \({\mathfrak {g}}\). The evaluation of the q-multiplicity formula at \(q = 1\) recovers the multiplicity of a weight in an irreducible highest weight representation of \({\mathfrak {g}}\). In this paper, we specialize to the Lie algebra \({{\mathfrak {s}}}{{\mathfrak {p}}}_6({\mathbb {C}})\) and we provide a closed formula for the q-analog of Kostant’s partition function, which extends recent results of Shahi, Refaghat, and Marefat. We also describe the supporting sets of the multiplicity formula (known as the Weyl alternation sets of \({{\mathfrak {s}}}{{\mathfrak {p}}}_6({\mathbb {C}})\)), and use these results to provide a closed formula for the q-multiplicity for any pair of dominant integral weights of \({{\mathfrak {s}}}{{\mathfrak {p}}}_6({\mathbb {C}})\). Throughout this work, we provide code to facilitate these computations.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Benedetti, C., Hanusa, C. R. H., Harris, P. E., Morales, A., Simpson, A.: Kostant’s partition function and magic multiplex juggling sequences, (2020), Preprint arXiv:2001.03219
Chang, K., Harris, P.E., Insko, E.: Kostant’s weight multiplicity formula and the Fibonacci and Lucas numbers. J. Comb. 1(11), 141–167 (2020)
Cockerham, J., Gutiérrez González, M., Harris, P. E., Loving, M., Miniño, A. V., Rennie, J., Kirby, G. R.: Weight \(q\)-multiplicities for representations of the exceptional Lie algebra \({\mathfrak{g}}_2\), (2020), arXiv
Garcia, R.E., Harris, P.E., Loving, M., Martinez, L., Melendez, D., Rennie, J., Kirby, G.R., Tinoco, D.: On Kostant’s weight \(q\)-multiplicity formula for \({{\mathfrak{s}}}{{\mathfrak{l}}}_4({\mathbb{C}})\). AAECC (2020). https://doi.org/10.1007/s00200-020-00454-8
Goodman, R., Wallach, N.R.: Symmetry, representations and invariants. Springer, New York, NY (2009)
Harris, P. E.: Combinatorial problems related to Kostant’s weight multiplicity formula, Ph.D. Thesis (2012)
Harris, P.E., Insko, E., Omar, M.: The q-analog of Kostant’s partition function and the highest root of the simple Lie algebras. Australas. J. Comb. 1(71), 68–91 (2015)
Harris, P.E., Insko, E., Simpson, A.: Computing weight \(q\)-multiplicities for the representations of the simple Lie algebras. Appl. Algebra Eng. Commun. Comput (2018). https://doi.org/10.1007/s00200-017-0346-7
Harris, P.E., Insko, E., Williams, L.: The adjoint representation of a Lie algebra and the support of Kostant’s weight multiplicity formula. J. Comb. 7, 1 (2013)
Harris, P.E., Lauber, E., L.: Weight \(q\)-multiplicities for representations of \({{\mathfrak{s}}}{{\mathfrak{p}}}_4({\mathbb{C}})\). J. Sib. Fed. Univ.-Math. Phys. 10(4), 494–502 (2017)
Harris, P.E., Lescinsky, H., Mabie, G.: Lattice patterns for the support of Kostant’s weight multiplicity formula on \({{\mathfrak{s}}}{{\mathfrak{l}}}_3({\mathbb{C}})\). Minn. J. Undergrad. Math. 4, 1 (2018)
Harris, P. E., Loving, M., Ramírez, J., Rennie, J., Kirby, G., Davila, E., Ulysse, F. O.: Visualizing the support of Kostant’s weight multiplicity formula for the rank two Lie algebras., (2019). arXiv: Combinatorics, https://arxiv.org/pdf/1908.08405.pdf
Harris, P.E., Rahmoeller, M., Schneider, L., Simpson, A.: When is the \(q\)-multiplicity of a weight a power of \(q\)? Electron. J. Comb. 26, 4 (2019)
Harris, P. E., Rodriguez-Hertz, M., Qin, D., Hollander, P.: Calculating weight multiplicities for Lie algebra of type \({C}_3\), publisher=GitHub, (2021. [Online].), Available at https://github.com/21mdr1/Weight-Multiplicities. Accessed 1 Aug 2021
Harris, P. E., Schneider, L., Rahmoeller, M.: On the asymptotic behavior of the q-analog of Kostant’s partition function. To appear in Journal of Combinatorics, (2019). https://arxiv.org/pdf/1912.02266.pdf
Harris, P. E., Hollander, P. Qin, D. C., Rodriguez-Hertz, M.: On Kostant’s weight \(q\)-multiplicity formula for \({{\mathfrak{s}}}{{\mathfrak{p}}}_6({\mathbb{C}})\), (2021), Preprint arXiv:2108.07217
Kostant, B.: A formula for the multiplicity of a weight. Proc. Nat. Acad. Sci. USA. 44, 588–589 (1958)
Lusztig, G.: Singularities, character formulas, and a \(q\)-analog of weight multiplicities. Asterisque 101, 208–229 (1983)
Shahi, E., Refaghat, H., Marefat, Y.: Kostant partition function for \({{\mathfrak{s}}}{{\mathfrak{l}}}_4({\mathbb{C}})\) and \({{\mathfrak{s}}}{{\mathfrak{p}}}_6({\mathbb{C}})\), RMS: Research in Mathematics & Statistics, 8:1, 1894687. https://doi.org/10.1080/27658449.2021.1894687 (2020)
Tarski, J.: The partition function for certain simple Lie algebras, Technical Report No. 7 Prepared under Contract A7 49(638)-79 Division File No. 3. 22, United States Air Force, Office of Scientific Research, https://play.google.com/books/reader?id=osDh_OXtG7sC&hl=en&pg=GBS.PP3, Retrieved February 24, 2020 (1957)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
P. E. Harris was supported by a Karen Uhlenbeck EDGE Fellowship. All authors thank Williams College for research funding support throughout the completion of this project.
Rights and permissions
About this article
Cite this article
Harris, P.E., Hollander, P., Qin, D.C. et al. On Kostant’s weight q-multiplicity formula for \({{\mathfrak {s}}}{{\mathfrak {p}}}_6({\mathbb {C}})\). AAECC 35, 253–289 (2024). https://doi.org/10.1007/s00200-022-00546-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-022-00546-7