Skip to main content
Log in

Degröbnerization: a political manifesto

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Computer Algebra relies heavily on the computation of Gröbner bases, and these computations are primarily performed by means of Buchberger’s algorithm. In this overview paper, we focus on methods avoiding the computational intensity associated to Buchberger’s algorithm and, in most cases, even avoiding the concept of Gröbner bases, in favour of methods relying on linear algebra and combinatorics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Note that we always take \(b_1=1\); the algorithms could be generalized to \(b_1 \ne 1\), but they would differ from the classical theory, object of this paper.

  2. For the relation between the Möller and the Buchberger–Möller algorithms see Sect. 9.

  3. Möller’s algorithm works in the same way for any term-ordering; Cerlienco-Mureddu applies only for the lexicographical term-ordering.

  4. For infinite sets of monomials, it is possible to have an associated Bar Code, provided that such sets are order ideals.

  5. They are related to the primary defining set of the investigated code.

  6. A corner cut is the monomial linear basis which is the support of all normal forms modulo an ideal given by a Gröbner basis and computed via Buchberger reduction.

  7. The non-commutative version of the FGLM Algorithm presented in [12] at our knowledge is the single available non-commutative algorithm in the families stem from [69] unless we decide to enclose also Todd–Coxeter algorithm [96].

  8. For the extension of their theory removing the radicality hypothesis see [72].

  9. Not necessarily consisting of normal forms w.r.t. the Gröbner basis of I w.r.t. a term ordering and not even consisting of monomials.

  10. \(\delta :=\#{{\mathfrak a}} = \#{{\mathfrak b}}.\)

  11. \(\overline{T}\) cannot contain repeated terms, while the \(\overline{T}^{[i]}\), for \(1<i \le n\), can. In case some repeated terms occur in \(\overline{T}^{[i]}\), \(1<i \le n\), they clearly have to be adjacent in the list, due to the lexicographical ordering.

  12. Clearly if a term \(\pi ^i(t_{\overline{j}})\) is not repeated in \(\mathfrak {M}^{[i]}\), the sublist containing it will be only \([\pi _i(t_{\overline{j}})]\), i.e. \(h=0\).

  13. The label depends on the position in the Bar Code, so if we insert a new bar \(\mathsf{{B}}_{j+1}^{(h)}\), the bars on its right change label becoming \(\mathsf{{B}}_{j+2}^{(h)}\) and so on.

  14. These are the points \(P_i\), \(1 \le i < N\) such that \(\pi ^{h}(\alpha ^{(N)})=\pi ^{h}(\alpha ^{(i)}) = (\alpha _h^{(N)},0,\ldots ,0)\), similarly to Cerlienco–Mureddu algorithm. The only difference is that we do not consider \(P_N\).

  15. Not necessarily a monomial one.

  16. Each \(r_i\) is the product of \(N-1\) factors \(p_{ik}^{[c_{i,k}]}=\frac{1}{a_{c_{i,k},i}-a_{c_{i,k},k}}\cdot (x_{c_{i,k}}- a_{c_{i,k},k})\).

  17. The adjective “primitive” only means that the code is over \(\mathbb {F}_{q^m}\) and \(n=q^m-1\).

  18. Indeed the last point has exponent \(2i+1=2(2^{m-1}-1)+1=2^{m}-1=n\). Note also that \(\vert \{0,\ldots ,2^{m-1}-1\}\cup \{-\infty \} \vert =2^{m-1}+1\).

References

  1. Abbott, J., Bigatti, A., Palezzato, E., Robbiano, L.: Computing and using minimal polynomials. J. Symb. Comput. 100, 137–163 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abbott, J., Bigatti, A., Kreuzer, M., Robbiano, L.: Computing ideals of points. J. Symb. Comput. 30, 341–356 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alonso, M.E., Becker, E., Roy, M.-F., Wörmann, T.: Zeroes, multiplcicities and idempotents for zerodimensional systems. Prog. Math. 143, 1–16 (1996)

    Google Scholar 

  4. Alonso, M.E., Marinari, M.G., Mora, M.T.: The big mother of all the dualities, II: Macaulay bases. J. AAECC 17, 409–451 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Augot, D., Bardet, M., Faugere, J.C.: Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Gröbner bases. In: Proceedings of IEEE International Symposium on Information Theory 2003 (2003)

  6. Augot, D., Bardet, M., Faugere, J.C.: On formulas for decoding binary cyclic codes. In: Proceedings of IEEE International Symposium on Information Theory 2007 (2007)

  7. Auzinger, W., Stetter, H.J.: An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations. I.S.N.M. 86, 11–30 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Barkee, B.: Gröbner bases. The ancient secret mystic power of the algu compubraicus. A revelation whose simplicity will make ladies swoon and grown men cry, Technical Report (1988)

  9. Becker, E., Marinari, M.G., Mora, T., Traverso, C.: The shape of the shape lemma. In: Proceedings of ISSAC94, pp. 129-133. ACM (1994)

  10. Berman, D.: The number of generators of a colength N ideal in a power series ring. J. Algebra 73, 156–166 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bézout, E.: Recherches sur le degré des équations résultantes de l’évanouissement des inconnues, et sur les moyens qu’il convient d’employer pour trouver ses équations. Mém. Acad. R. Sci. Paris 288—338 (1764)

  12. Borges-Trenard, M., Borges-Quintana, M., Mora, T.: Computing Gröbner bases by FGLM techniques in a noncommutative setting. J. Symb. Comput. 30, 429–449 (2000)

    Article  MATH  Google Scholar 

  13. Caboara, M. Mora, T.: The Chen-Reed-Helleseth-Truong , algorithm and the Gianni-Kalkbrenner Gröbner shape theorem. Appl. Algebra Eng. Commun. Comput. 13 (2002)

  14. Cardinal, J.P.: Dualité et algorithms itératifs pour la résolution de systémes polynomiaux. Ph.D. Thesis, Univ. Rennes I (1993)

  15. Cardinal, J.P., Mourrain, B.: Algebraic approach of resisues and applications. Lect. Notes Appl. Math. 32, 189–210 (1999)

    MATH  Google Scholar 

  16. Caruso, F., Orsini, E., Tinnirello, C., Sala, M.: On the shape of the general error locator polynomial for cyclic codes. IEEE Trans. Inform. Theory 63(6), 3641–3657 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cayley, A.: Note sur la méthode d’élimination de Bezout. J. Reine Ang. Math. LII I, 366–7 (1857)

    Google Scholar 

  18. Cayley, A.: A fourth memory upon quantics. Phil. Trans. R. Soc. Lond. CXLVII I, 415–427 (1858)

    Google Scholar 

  19. Ceria, M.: A proof of the “Axis of Evil theorem’’ for distinct points. Rend. Semin. Mat. dell’Univ. Politec. Torino 72(3–4), 213–233 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Ceria, M.: Bar code for monomial ideals. J. Symb. Comput. 91, 30–56 (2019). https://doi.org/10.1016/j.jsc.2018.06.012

    Article  MathSciNet  MATH  Google Scholar 

  21. Ceria, M.: Bar code and Janet-like division. Atti Accad. Peloritana Pericol. Classe Sci. Fis. Mat. Nat. (2022). https://doi.org/10.1478/AAPP.1001A2

    Article  MathSciNet  Google Scholar 

  22. Ceria, M.: Bar code: a visual representation for finite set of terms and its applications. Math. Comput. Sci. 14(2), 497–513 (2020). https://doi.org/10.1007/s11786-019-00425-4

    Article  MathSciNet  MATH  Google Scholar 

  23. Ceria, M.: Bar code vs Janet tree. Atti Accad. Peloritana Pericol. Classe Sci. Fis. Mat. Nat. (2019). https://doi.org/10.1478/AAPP.972A6

    Article  MathSciNet  MATH  Google Scholar 

  24. Ceria, M.: Half error locator polynomials for efficient decoding of binary cyclic codes, in preparation

  25. Ceria, M., Mora, T.: Towards a Gröbner-free approach to Coding, submitted

  26. Ceria M., Mora T.: Combinatorics of ideals of points: a Cerlienco–Mureddu-like approach for an iterative lex game. arXiv:1805.09165 [math.AC]

  27. Ceria, M., Mora, T., Sala, M.: HELP: a sparse error locator polynomial for BCH codes. Appl. Algebra Eng. Commun. Comput. 31(3), 215–233 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ceria, M., Mora, T., Sala, M.: Zech tableaux as tools for sparse decoding Rend. Semin. Mat. 78(1), 43–56 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Ceria, M., Mora, T., Visconti, A.: Efficient computation of squarefree separator polynomials. In: International Congress on Mathematical Software, pp. 98–104. Springer, Cham (2018)

  30. Ceria, M., Mora, T., Visconti, A.: Degröbnerization and its applications: a new approach for data modelling, submitted

  31. Ceria, M., Lundqvist, S., Mora, T.: Degröbnerization and its applications: reverse engineering of gene regulatory networks 2021, submitted

  32. Cerlienco, L., Mureddu, M.: Algoritmi combinatori per l’interpolazione polinomiale in dimensione ≥ 2, Publ. I.R.M.A. Strasbourg, 461/S-24 Actes 24e Séminaire Lotharingien, pp. 39–76. Möller (1993)

  33. Cerlienco, L., Mureddu, M.: From algebraic sets to monomial linear bases by means of combinatorial algorithms. Discrete Math. 139, 73–87 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Cerlienco, L., Mureddu, M.: Multivariate interpolation and standard bases for Macaulay modules. J. Algebra 251, 686–726 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen, X., Reed, I.S., Helleseth, T., Truong, K.: Use of Gröbner bases to decode binary cyclic codes up to the true minimum distance. IEEE Trans. Inform. Theory 40, 1654–1661 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen, X., Reed, I.S., Helleseth, T., Truong, K.: General principles for the algebraic decoding of cyclic codes. IEEE Trans. Inform. Theory 40, 1661–1663 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen, X., Reed, I.S., Helleseth, T., Truong, K.: Algebraic decoding of cyclic codes: a polynomial ideal point of view. Contemp. Math. 168, 15–22 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cooper, A.B.: III, Direct solution of BCH decoding equations. In: Arikan, E. (ed.) Communications, Control and Signal Processing, pp. 281–286. Elsevier, Amsterdam (1990)

  39. Cooper, A.B., III.: Finding BCH error locator polynomials in one step. Electron. Lett. 27, 2090–2091 (1991)

    Article  MATH  Google Scholar 

  40. Dixon, A.L.: On a form of the eliminant of two quantics. Proc. Lond. Math. Soc. 6, 468–78 (1908)

    Article  MathSciNet  MATH  Google Scholar 

  41. Dubé, T., Mishra, B., Yap, C.: Admissible orderings and bounds on Gröbner normal form algorithm. NYU Computer Science, Technical Report (1986)

  42. Erdös, J.: On the structure of ordered real vector spaces. Publ. Math. Debr. 4, 334–343 (1956)

    MathSciNet  Google Scholar 

  43. Farr, J.B., Gao, S.: Computing Gröbner bases for vanishing ideals of finite sets of points. In: International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, pp. 118–127. Springer, Berlin (2006)

  44. Faugere, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16, 329–344 (1993)

    Article  MATH  Google Scholar 

  45. Felszeghy, B., Ráth, B., Rónyai, L.: The lex game and some applications. J. Symb. Comput. 41(6), 663–681 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Felszeghy, B., Rányai, L.: On the lexicographic standard monomials of zero dimensional ideals, pp. 95–105 (2006)

  47. Gianni, P.: Algebraic solution of systems of polynomial equations using Gröbner bases. Comput. Sci. 356, 247–257 (1987)

    Google Scholar 

  48. Gianni, P.: Properties of Gröbner bases under specialization. Lect. Notes Comput. Sci. 378, 293–297 (1991)

    Article  MATH  Google Scholar 

  49. Gordan, P.: Neuer Beweis des Hilbertschen Satzes über homogene Funktionen. Gott. Nachr. 1899, 240–242 (1899)

    MATH  Google Scholar 

  50. Gordan, P.: Les invariants des formes binaries. J. Math. Pure Appl. 6, 141–156 (1900)

    MATH  Google Scholar 

  51. Hilbert, D.: Uber die theorie der algebraicschen formen. Math. Ann. 36, 473–534 (1890)

    Article  MathSciNet  MATH  Google Scholar 

  52. Just, W., Stigler, B.: Computing Gröbner bases of ideals of few points in high dimensions. Commun. Comput. Algebra 40(3), 65–96 (2006)

    Article  MATH  Google Scholar 

  53. Just, W., Stigler, B.: Efficiently computing Gröbner bases of ideals of points. arXiv:0711.3475 (2007)

  54. Kapur, D., Saxena, T., Yang, L.: Algebraic and geometric reasoning using dixon resultants. Proc. ISSAC 94, 99–36 (1994)

    MATH  Google Scholar 

  55. Kapur, D., Saxena, T.: Extraneus factors in the Dixon resultant formulation. Proc. ISSAC 97, 141–148 (1997)

    Article  MATH  Google Scholar 

  56. Kalkbrenner, M.: Solving systems of algebraic equations using Gröbner bases. Lect. Notes Comput. Sci. 378, 282–292 (1991)

    Article  Google Scholar 

  57. Kreuzer, M., Robbiano, L.: Computational Linear and Commutative Algebra. Springer, Heidelberg (2016)

    Book  MATH  Google Scholar 

  58. Lakshman, Y.N.: On the complexity of computing Gröbner bases for zero-dimensional polynomial ideals. Ph.D. Thesis, RPI, Troy (1990)

  59. Lakshman, Y.N.: On the complexity of computing a Gröbner basis for the radical of a zero dimensional ideal. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing (1990)

  60. Lakshman, Y.N.: A single exponential bound on the complexity of computing Gröbner bases of zero dimensional ideals. Prog. Math. 94, 227–234 (1990)

    MathSciNet  Google Scholar 

  61. Laubenbacher, R., Stigler, B.: A computational algebra approach to the reverse engineering of gene regulatory networks. J. Theor. Biol. 229(4), 523–537 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  62. Laubenbacher, R., Stigler, B.: Design of experiments and biochemical network inference in Algebraic and Geometric Methods in Statistics. Eds: Gibilisco, Riccomagno, Rogantin, Wynn. Cambridge University Press, Cambridge (2008)

  63. Loustaunau, P., York, E.V.: On the decoding of cyclic codes using Gröbner bases. Appl. Algebra Eng. Commun. Comput. 8, 469–483 (1997)

    Article  MATH  Google Scholar 

  64. Lundqvist, S.: Vector space bases associated to vanishing ideals of points. J. Pure Appl. Algebra 214(4), 309–321 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  65. Lundqvist, S.: Complexity of comparing monomials and two improvements of the Buchberger–Möller algorithm. In: Mathematical Methods in Computer Science, pp. 105–125. Springer, Berlin (2008)

  66. Lundqvist, S.: Multiplication matrices and ideals of projective dimension zero. Math. Comput. Sci. 6(1), 43–59 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  67. Macaulay, F.S.: On the resolution of a given modular system into primary systems including some properties of Hilbert numbers. Math. Ann. 74, 66–121 (1913)

    Article  MathSciNet  MATH  Google Scholar 

  68. Macaulay, F.S.: The Algebraic Theory of Modular Systems. Cambridge University Press, Cambridge (1916)

    Book  MATH  Google Scholar 

  69. Marinari, M.G., Mora T., Möller, H.M.: Gröbner bases of ideals given by dual bases. In: Proceedings of ISSAC ’91, pp. 55–63. ACM (1991)

  70. Marinari, M.G., Möller, H.M., Mora, T.: Gröbner bases of ideals defined by functionals with an application to ideals of projective points. Appl. Algebra Eng. Commun. Comput. 4(2), 103–145 (1993)

    Article  MATH  Google Scholar 

  71. Möller, H.M., Buchberger, B.: The construction of multivariate polynomials with preassigned zeros. In: European Computer Algebra Conference, pp. 24–31. Springer, Berlin (1982)

  72. Möller, M., Stetter, H.: Multivariate polynomial equations with multiple zeros solved by matrix eigenproblems. Num. Math. 70, 311–325 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  73. Mora, T.: The FGLM problem and Moeller’s algorithm on zero-dimensional ideals. In: Sala, M., et al. (eds.) Gröbner bases, coding, and cryptography, pp. 27–46. Springer, Berlin (2009)

    Chapter  MATH  Google Scholar 

  74. Mora , T.: Solving Polynomial Equation Systems 4 Vols. Cambridge University Press, I https://doi.org/10.1017/CBO9780511542831 (2003), II https://doi.org/10.1017/CBO9781107340954 (2005), III https://doi.org/10.1017/CBO9781139015998 (2015), IV https://doi.org/10.1017/CBO9781316271902 (2016)

  75. Mora, T.: An FGLM-like algorithm for computing the radical of a zero-dimensional ideal. J. Algebra Appl. 17(01), 1850002 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  76. Mora, T., Orsini, E.: Decoding cyclic codes: the cooper philosophy. In: Sala, M., et al. (eds.) Gröbner Bases, Coding, and Cryptography, pp. 62–92. Springer, Berlin (2009)

    Google Scholar 

  77. Mora, T., Robbiano, L.: Points in affine and projective spaces. In: Computational Algebraic Geometry and Commutative Algebra, Cortona-91, 34, pp. 106–150. Cambridge University Press, Cambridge (1993)

  78. Mora, T.: https://drive.google.com/file/d/1NlbiEehGGWIbWcbsypYNFY0oknpexpbL/view?usp=sharing

  79. Mora, T.: https://drive.google.com/file/d/1ye4P7WrBphbRk1S1ncbdBxgxxPFb1IWw/view?usp=sharing

  80. Mora, T.: https://drive.google.com/file/d/1QKobQNLFlvmMtX6n-9ZPyjG382dVKdJ0/view?usp=sharing

  81. Mourrain, B.: A new criterion for normal form algorithms. In: Fossorier, M., Imai, H., Lin, S., Poli, A. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1999. Lecture Notes in Computer Science, vol 1719. Springer, Berlin (1999)

  82. Mourrain, B.: Bezoutian and quotient ring structure. J. Symb. Comput. 39, 397–415 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  83. Mourrain, B., Trebuchet, P.: Solving projective complete intersection faster. In: Proceedings of ISSAC’00, pp. 234–241. ACM (2000)

  84. Naldi, S., Neiger, V.: A divide-and-conquer algorithm for computing Gröbner bases of syzygies in finite dimension. In: Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation (2020)

  85. Orsini, E., Sala, M.: Correcting errors and erasures via the syndrome variety. J. Pure Appl. Algebra 200, 191–226 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  86. Pesch, M.: Gröbner bases in skew polynomial rings. Dissertation, Passau (1997)

  87. Pesch, M.: Two-sided Gröbner bases in iterated ore extensions. Prog. Comput. Sci. Appl. Logic 15, 225–243 (1991)

    MATH  Google Scholar 

  88. Pistone, G., Rogantin, M.P.: Indicator function and complex coding for mixed fractional factorial designs. J. Stat. Plan. Inference 138(3), 787–802 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  89. Pistone, G., Riccomagno, E., Rogantin, M.P.: Methods in algebraic statistics for the design of experiments. In: Optimal Design and Related Areas in Optimization and Statistics, pp. 97–132. Springer, Berlin (2009)

  90. Robbiano, L.: Term orderings on the polynomial ring. In: Proceedings of EUROCAL’85. Lectures Notes in Computer Science, vol. 204, pp. 513–517 (1985)

  91. Robbiano, L.: Gröbner bases and statistics. In: Buchberger, B., Winkler, F. (eds) Gröbner bases and applications, pp. 179–204. Cambridge University Press, Cambridge (1998)

  92. Rouillier, F.: Solving zero-dimensional systems through the rational univariate representation. J. AAECC 9, 433–461 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  93. Salmon, G.: Lessons Introductory to the Modern Higher Algebra, 5th edn. Chelsea Pub. Co., New York (1885)

    Google Scholar 

  94. Stetter, H.J.: Numerical Polynomial Algebra. SIAM, Philadelphia (2004)

    Book  MATH  Google Scholar 

  95. Tamari, D.: On a certain classification of rings and semigroups. Bull. A.M.S 54, 153–158 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  96. Todd, J.A., Coxeter, H.S.M.: A practical method for enumerating cosets of a finite abstract group. In: Proceedings of the Edinburgh Mathematical Society. Series II, vol. 5, pp. 26–34. https://doi.org/10.1017/S0013091500008221 (1936)

  97. Weispfenning, V.: Finite Gröbner bases in non-Noetherian skew polynomial rings. In: Proceedings of ISSAC’92, pp. 320–332. ACM (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Ceria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Notational choices

Notational choices

We summarize here our notational choices within the paper.

ac Field elements

\(\alpha\) Root

AM Square matrices

\(\mathbf{a},\mathbf{b},\mathbf{c}\) Basis of an algebra

\({{\mathfrak a}},{{\mathfrak b}}\) Monomial basis of an algebra

\(\mathcal {A}\) Algebra

b Algebra elements

\(\mathsf {B}\) Bar code

\(D,\delta ,\gamma ,k,m,n, \nu , N,s,t\) Integers

d Dixon polynomial

\(\Delta\) Dixon resultant

\(\mathsf{D}\) Dixon matrix

\(\mathcal {E}\) Vector space

\({{\mathcal {F}}}\) Set of polynomials

\(f,g,\overline{\gamma },h,U,V,v\) Polynomials

\(\mathbf{f}\) Module element

\({{\bar{f}}}\) Distributed cost

F Dynamical system representation

\(\overline{F}\) Matrix whose rows are vectors

\(\Psi\) Endomorphism

\(\phi\) Functional

\(\Phi\) Cerlienco–Mureddu correspondence

\(\mathbf{g}\) Number of elements of a Gröbner basis

\(\mathcal {G}\) a Gröbner basis

\(\mathbf {k}\) Field

I Ideal

J Semigroup ideal

EL List

\(\mathfrak {M}\) Matrix of terms

\(\mathsf {N}\) Normal set

\(\mathcal {N}\) Module

P Points

\(\mathcal {P}\) Ring

\(\mathcal {Q}\) Family of separators

QR Separators

S Set of points

\({\mathcal {S}}\) Linearly indipendent set of polynomials

\(t,\tau\) Monomial

T Set of monomials

T Leading term

\(\mathcal {T}\) Semigroup of terms

\(\mathfrak {T}\) Trie

\(u,w\) Vertices of a tree

\(\bar{e}\),\(\bar{u}\), \(\bar{v}\),\(\bar{w}\) Vectors

\(\mathcal {V}\) Vector space

xyzT Variables

\(\chi\) Characteristic polynomial

\(\mathbf{X}\) Set of points

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceria, M., Lundqvist, S. & Mora, T. Degröbnerization: a political manifesto. AAECC 33, 675–723 (2022). https://doi.org/10.1007/s00200-022-00586-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-022-00586-z

Keywords

Navigation