Skip to main content

Advertisement

Log in

Optimal Formally Self-Dual Codes over ?5 and ?7

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract.

In this paper, we study optimal formally self-dual codes over ?5 and ?7. We determine the highest possible minimum weight for such codes up to length 24. We also construct formally self-dual codes with highest minimum weight, some of which have the highest minimum weight among all known linear codes of corresponding length and dimension. In particular, the first known [14, 7, 7] code over ?7 is presented. We show that there exist formally self-dual codes which have higher minimum weights than any comparable self-dual codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Author information

Authors and Affiliations

Authors

Additional information

Received: May 18, 1998; revised version: September 4, 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dougherty, S., Gulliver, T. & Harada, M. Optimal Formally Self-Dual Codes over ?5 and ?7 . AAECC 10, 227–236 (2000). https://doi.org/10.1007/s002000050126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002000050126