Skip to main content
Log in

A divide-and-conquer algorithm for the eigendecomposition of symmetric block-diagonal plus semiseparable matrices

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

We present a fast and numerically stable algorithm for computing the eigendecomposition of a symmetric block diagonal plus semiseparable matrix. We report numerical experiments that indicate that our algorithm is significantly faster than the standard method which treats the given matrix as a general symmetric dense matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen: LAPACK Users’ Guide, SIAM, Philadelphia, PA, second ed., 1994

  2. J. R. Bunch, C. P. Nielsen, D. C. Sorensen: Rank-one modification of the symmetric eigenproblem. Numer. Math. 31, 31–48 (1978)

    MathSciNet  Google Scholar 

  3. J. Carrier, L. Greengard, V. Rokhlin: A fast adaptive multipole algorithm for particle simulations. SIAM J. Sci. Stat. Comput. 9, 669–686 (1988)

    MathSciNet  MATH  Google Scholar 

  4. S. Chandrasekaran, M. Gu: Fast and Stable Eigendecomposition of Symmetric Banded plus Semi-separable Matrices. Submitted to Lin. Alg. Applics

  5. J. J. M. Cuppen: A divide and conquer method for the symmetric tridiagonal eigenproblem. Numer. Math. 36, 177–195 (1981)

    Google Scholar 

  6. J. J. Dongarra, D. C. Sorensen: A fully parallel algorithm for the symmetric eigenvalue problem. SIAM J. Sci. Stat. Comput. 8, S139–S154 (1987)

    Google Scholar 

  7. G. Golub, C. Van Loan: Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 3nd ed., 1996

  8. G. H. Golub: Some modified matrix eigenvalue problems. SIAM Review 15, 318–334 (1973)

    Google Scholar 

  9. L. Greengard, V. Rokhlin: A fast algorithm for particle simulations. J. Comp. Phys. 73, 325–348 (1987)

    MathSciNet  MATH  Google Scholar 

  10. M. Gu, S. Eisenstat: A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem. SIAM J. Matrix Anal. Appl. 16, 79–92 (1995)

    MathSciNet  MATH  Google Scholar 

  11. M. Gu, S. C. Eisenstat: A fast divide-and-conquer method for the symmetric tridiagonal eigenproblem. Presented at the fourth SIAM conference on applied linear algebra, Minneapolis, Minnesota, September 1991

  12. M. Gu, S. C. Eisenstat: A stable and fast algorithm for updating the singular value decomposition. Research Report YALEU/DCS/RR-966, Department of Computer Science, Yale University, June 1993

  13. M. Gu, S. C. Eisenstat: A stable and efficient algorithm for the rank-one modification of the symmetric eigenproblem. SIAM J. Matrix Anal. Appl. 15, 1266–1276 (1994)

    MathSciNet  MATH  Google Scholar 

  14. E. R. Jessup: Parallel solution of the symmetric tridiagonal eigenproblem. PhD thesis, Department of Computer Science, Yale University, 1989

  15. E. R. Jessup, I. C. F. Ipsen: Improving the accuracy of inverse iteration. SIAM J. Sci. Stat. Comput. 13, 550–572 (1992)

    MathSciNet  MATH  Google Scholar 

  16. W. Kahan: Rank-1 perturbed diagonal’s eigensystem. Unpublished manuscript, July 1989

  17. R.-C. Li: Solving secular equations stably and efficiently. Unpublished manuscript, October 1992

  18. R.-C. Li: Solving secular equations stably and efficiently. Computer Science Dept. Technical Report CS-94-260, University of Tennessee, Knoxville, November 1994. (LAPACK Working Note #89)

  19. B. N. Parlett: The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs, NJ, 1980

  20. D. C. Sorensen, P. T. P. Tang: On the orthogonality of eigenvectors computed by divide-and-conquer techniques. SIAM J. Numer. Anal. 28, 1752–1775 (1991)

    MathSciNet  MATH  Google Scholar 

  21. G. W. Stewart: Introduction to Matrix Computations. Academic Press, New York, 1973

  22. J. H. Wilkinson: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chandrasekaran.

Additional information

Mathematics Subject Classification (1991): 15A09, 15A23, 65F05, 65L10, 65R20

This research was supported in part by NSF Career Award CCR-9734290.

This research was supported in part by NSF Career Award CCR-9702866 and by Alfred Sloan Research Fellowship BR-3720.

Received: 10, September 2001

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrasekaran, S., Gu, M. A divide-and-conquer algorithm for the eigendecomposition of symmetric block-diagonal plus semiseparable matrices. Numer. Math. 96, 723–731 (2004). https://doi.org/10.1007/s00211-002-0199-1

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-002-0199-1

Keywords