Summary.
We present a fast and numerically stable algorithm for computing the eigendecomposition of a symmetric block diagonal plus semiseparable matrix. We report numerical experiments that indicate that our algorithm is significantly faster than the standard method which treats the given matrix as a general symmetric dense matrix.
Similar content being viewed by others
References
E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen: LAPACK Users’ Guide, SIAM, Philadelphia, PA, second ed., 1994
J. R. Bunch, C. P. Nielsen, D. C. Sorensen: Rank-one modification of the symmetric eigenproblem. Numer. Math. 31, 31–48 (1978)
J. Carrier, L. Greengard, V. Rokhlin: A fast adaptive multipole algorithm for particle simulations. SIAM J. Sci. Stat. Comput. 9, 669–686 (1988)
S. Chandrasekaran, M. Gu: Fast and Stable Eigendecomposition of Symmetric Banded plus Semi-separable Matrices. Submitted to Lin. Alg. Applics
J. J. M. Cuppen: A divide and conquer method for the symmetric tridiagonal eigenproblem. Numer. Math. 36, 177–195 (1981)
J. J. Dongarra, D. C. Sorensen: A fully parallel algorithm for the symmetric eigenvalue problem. SIAM J. Sci. Stat. Comput. 8, S139–S154 (1987)
G. Golub, C. Van Loan: Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 3nd ed., 1996
G. H. Golub: Some modified matrix eigenvalue problems. SIAM Review 15, 318–334 (1973)
L. Greengard, V. Rokhlin: A fast algorithm for particle simulations. J. Comp. Phys. 73, 325–348 (1987)
M. Gu, S. Eisenstat: A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem. SIAM J. Matrix Anal. Appl. 16, 79–92 (1995)
M. Gu, S. C. Eisenstat: A fast divide-and-conquer method for the symmetric tridiagonal eigenproblem. Presented at the fourth SIAM conference on applied linear algebra, Minneapolis, Minnesota, September 1991
M. Gu, S. C. Eisenstat: A stable and fast algorithm for updating the singular value decomposition. Research Report YALEU/DCS/RR-966, Department of Computer Science, Yale University, June 1993
M. Gu, S. C. Eisenstat: A stable and efficient algorithm for the rank-one modification of the symmetric eigenproblem. SIAM J. Matrix Anal. Appl. 15, 1266–1276 (1994)
E. R. Jessup: Parallel solution of the symmetric tridiagonal eigenproblem. PhD thesis, Department of Computer Science, Yale University, 1989
E. R. Jessup, I. C. F. Ipsen: Improving the accuracy of inverse iteration. SIAM J. Sci. Stat. Comput. 13, 550–572 (1992)
W. Kahan: Rank-1 perturbed diagonal’s eigensystem. Unpublished manuscript, July 1989
R.-C. Li: Solving secular equations stably and efficiently. Unpublished manuscript, October 1992
R.-C. Li: Solving secular equations stably and efficiently. Computer Science Dept. Technical Report CS-94-260, University of Tennessee, Knoxville, November 1994. (LAPACK Working Note #89)
B. N. Parlett: The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs, NJ, 1980
D. C. Sorensen, P. T. P. Tang: On the orthogonality of eigenvectors computed by divide-and-conquer techniques. SIAM J. Numer. Anal. 28, 1752–1775 (1991)
G. W. Stewart: Introduction to Matrix Computations. Academic Press, New York, 1973
J. H. Wilkinson: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965
Author information
Authors and Affiliations
Corresponding author
Additional information
Mathematics Subject Classification (1991): 15A09, 15A23, 65F05, 65L10, 65R20
This research was supported in part by NSF Career Award CCR-9734290.
This research was supported in part by NSF Career Award CCR-9702866 and by Alfred Sloan Research Fellowship BR-3720.
Received: 10, September 2001
Rights and permissions
About this article
Cite this article
Chandrasekaran, S., Gu, M. A divide-and-conquer algorithm for the eigendecomposition of symmetric block-diagonal plus semiseparable matrices. Numer. Math. 96, 723–731 (2004). https://doi.org/10.1007/s00211-002-0199-1
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-002-0199-1