Skip to main content
Log in

A variational principle for adaptive approximation of ordinary differential equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

A variational principle, inspired by optimal control, yields a simple derivation of an error representation, global error=∑local error⋅weight, for general approximation of functions of solutions to ordinary differential equations. This error representation is then approximated by a sum of computable error indicators, to obtain a useful global error indicator for adaptive mesh refinements. A uniqueness formulation is provided for desirable error representations of adaptive algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Engrg. 142, 1–88 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alekseev, V.M.: An estimate for the perturbations of the solutions of ordinary differential equations. II. Vestnik Moskov. Univ. Ser. I Mat. Mech 3, 3–10 (1961)

    Google Scholar 

  3. Babuška, I., Miller, A., Vogelius, M.: Adaptive methods and error estimation for elliptic problems of structural mechanics. In: Adaptive computational methods for partial differential equations. (SIAM, Philadelphia, Pa., 1983) 57–73

  4. Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math. 4(4), 237–264 (1996)

    MATH  Google Scholar 

  5. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica 1–102 (2001)

  6. Böttcher, K., Rannacher, R.: Adaptive error control in solving ordinary differential equations by the discontinuous Galerkin method. Preprint, 1996

  7. Dahlquist, G., Björk, Å197.: Numerical Methods. (Prentice-Hall, 1974)

  8. Dahlquist, G., Björk, Å197.: Numerical Mathematics. http://www.mai.liu.se/∼akbjo/NMbook.html.

  9. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numerica 105–158 (1995)

  10. Estep, D.: A posteriori error bounds and global error control for approximation of ordinary differential equations. SIAM J. Numer. Anal. 32, 1–48 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Gröbner, W.: Die Lie-Reihen und ihre Anwendungen, (VEB Deutscher Verlag der Wissenschaften, Berlin, 1967)

  12. Harrier, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. (Springer-Verlag, 1993)

  13. Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations. (John Wiley & Sons, Inc., 1962)

  14. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. (Society for Industrial and Applied Mathematics, 1996)

  15. Johnson, C.: Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 25, 908–926 (1988)

    MathSciNet  MATH  Google Scholar 

  16. Johnson, C., Szepessy, A.: Adaptive finite element methods for conservation laws based on a posteriori error estimates. Comm. Pure Appl. Math. 48, 199–234 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Moon, K.-S., Szepessy, A., Tempone, R., Zouraris, G.E.: Hyperbolic differential equations and adaptive numerics. In: Theory and numerics of differential equations (Eds. J.F. Blowey, J.P. Coleman and A.W. Craig, Durham 2000, Springer Verlag, 2001)

  18. Moon, K.-S., Szepessy, A., Tempone, R., Zouraris, G.E. (2003) Convergence rates for adaptive approximation of ordinary differential equations. Numer. Math. (in press). DOI 10.1007/s00211-003-0466-9

  19. Prothero, A.: Estimating the accuracy of numerical solutions to ordinary differential equations. In: Computational Techniques for Ordinary Differential Equations. I. Gladwell and D.K. Sayers, eds. Academic Press, New York, 1980, pp. 103–128

  20. Utumi, T., Takaki, R., Kawai, T.: Optimal time step control for the numerical solution of ordinary differential equations. SIAM J. Numer. Anal. 33, 1644–1653 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Sook Moon.

Additional information

Mathematics Subject Classification (2000): 65L70, 65G50

This work has been supported by the EU–TMR project HCL # ERBFMRXCT960033, the EU–TMR grant # ERBFMRX-CT98-0234 (Viscosity Solutions and their Applications), the Swedish Science Foundation, UdelaR and UdeM in Uruguay, the Swedish Network for Applied Mathematics, the Parallel and Scientific Computing Institute (PSCI) and the Swedish National Board for Industrial and Technical Development (NUTEK).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, KS., Szepessy, A., Tempone, R. et al. A variational principle for adaptive approximation of ordinary differential equations . Numer. Math. 96, 131–152 (2003). https://doi.org/10.1007/s00211-003-0467-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-003-0467-8

Keywords