Skip to main content
Log in

A mixed finite element method with Lagrange multipliers for nonlinear exterior transmission problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary.

We apply a mixed finite element method to numerically solve a class of nonlinear exterior transmission problems in R 2 with inhomogeneous interface conditions. Besides the usual unknowns required for the dual-mixed method, which include the gradient of the temperature in this nonlinear case, our approach makes use of the trace of the outer solution on the transmission boundary as a suitable Lagrange multiplier. In addition, we use a boundary integral operator to reduce the original transmission problem on the unbounded region into a nonlocal one on a bounded domain. In this way, we are lead to a two-fold saddle point operator equation as the resulting variational formulation. We prove that the continuous formulation and the associated Galerkin scheme defined with Raviart-Thomas spaces are well posed, and derive the a-priori estimates and the corresponding rate of convergence. Then, we introduce suitable local problems and deduce first an implicit reliable and quasi-efficient a-posteriori error estimate, and then a fully explicit reliable one. Finally, several numerical results illustrate the effectivity of the explicit estimate for the adaptive computation of the discrete solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agouzal, A., Thomas, J.-M.: An extension theorem for equilibrium finite element spaces. Japan J. Indust. Appl. Math. 13(2), 257–266 (1996)

    MATH  Google Scholar 

  2. Ainsworth, M., Oden, J.T.: A posteriori error estimators for the Stokes and Oseen equations. SIAM J. Numer. Anal. 34, 228–245 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Araya, R.A., Barrios, T.P., Gatica, G.N., Heuer, N.: A-posteriori error estimates for a mixed-FEM formulation of a nonlinear elliptic problem. Comput. Meth. Appl. Mechan. Engin. 191(21–22), 2317–2336 (2002)

    Google Scholar 

  4. Babuška, I., Aziz, A.K.: Survey Lectures on the Mathematical Foundations of the Finite Element Method. In: A.K. Aziz (ed.) The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York, 1972

  5. Babuška, I., Gatica, G.N.: On the mixed finite element method with Lagrange multipliers. Numer. Meth. for Partial Differ. Equations 19(2), 192–210 (2003)

    Article  Google Scholar 

  6. Bank, R.E., Weiser, A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44, 283–301 (1985)

    MathSciNet  MATH  Google Scholar 

  7. Barrientos, M.A., Gatica, G.N., Maischak, M.: A-posteriori error estimates for linear exterior problems via mixed-FEM and DtN mappings. Math. Model. Numer. Anal. 36(2), 241–272 (2002)

    Article  MATH  Google Scholar 

  8. Barrientos, M.A., Gatica, G.N., Stephan, E.P.: A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a-posteriori error estimate. Numer. Math. 91(2), 197–222 (2002)

    Article  MATH  Google Scholar 

  9. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Berlin Heidelberg-New York: Springer-Verlag, 1991

  10. Brink, U., Stephan, E.P.: Adaptive coupling of boundary elements and mixed finite elements for incompressible elasticity. Numer. Meth. for Partial Differ. Equations 17, 79–92 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carstensen, C.: An a posteriori error estimate for a first-kind integral equation. Math. Comput. 66(217), 139–155 (1997)

    Article  MATH  Google Scholar 

  12. Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19, 613–621 (1988)

    MathSciNet  MATH  Google Scholar 

  13. Gatica, G.N.: An application of Babuška-Brezzi’s theory to a class of variational problems. Applicable Anal. 75, 297–303 (2000)

    MathSciNet  Google Scholar 

  14. Gatica, G.N., Heuer, N.: A dual-dual formulation for the coupling of mixed-FEM and BEM in hyperelasticity. SIAM J. Numer. Anal. 38(2), 380–400 (2000)

    Article  MATH  Google Scholar 

  15. Gatica, G.N., Heuer, N.: An expanded mixed finite element approach via a dual-dual formulation and the minimum residual method. J. Comput. Appl. Math. 132(2), 371–385 (2001)

    Article  MATH  Google Scholar 

  16. Gatica, G.N., Heuer, N., Meddahi, S.: On the numerical analysis of nonlinear two-fold saddle point problems. IMA J. Numer. Anal. 23(2), 301–330 (2003)

    MATH  Google Scholar 

  17. Gatica, G.N., Heuer, N., Stephan, E.P.: An implicit-explicit residual error estimator for the coupling of dual-mixed finite elements and boundary elements in elastostatics. Math. Meth. Appl. Sci. 24, 179–191 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gatica, G.N., Meddahi, S.: A dual-dual mixed formulation for nonlinear exterior transmission problems. Math. Comput. 70(236), 1461–1480 (2001)

    Article  MATH  Google Scholar 

  19. Gatica, G.N., Stephan, E.P.: A mixed-FEM formulation for nonlinear incompressible elasticity in the plane. Numer. Meth. for Partial Differ. Equations 18(1), 105–128 (2002)

    Article  MATH  Google Scholar 

  20. Grisvard, P.: Elliptic Problems in Non-Smooth Domains. Monographs and Studies in Mathematics, vol. 24, Pitman, 1985

  21. Lions, J.-L., Magenes, E.: Problèmes aux Limites non Homogènes et Applications I. Dunod, Paris, 1968

  22. Roberts, J.E., Thomas, J.-M.: Mixed and Hybrid Methods. In: P.G. Ciarlet, J.L. Lions (eds.) Handbook of Numerical Analysis, vol. II, Finite Element Methods (Part 1), North-Holland, Amsterdam, 1991

  23. Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester, 1996

  24. Zenišek, A.: Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations. Academic Press, London, 1990

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel N. Gatica.

Additional information

Mathematics Subject Classification (2000): 65N30, 65N38, 65N22, 65F10

This research was partially supported by CONICYT-Chile through the FONDAP Program in Applied Mathematics, and by the Dirección de Investigación of the Universidad de Concepción through the Advanced Research Groups Program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bustinza, R., Garcia, G. & Gatica, G. A mixed finite element method with Lagrange multipliers for nonlinear exterior transmission problems. Numer. Math. 96, 481–523 (2004). https://doi.org/10.1007/s00211-003-0475-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-003-0475-8

Keywords