Summary.
In this paper we develop an a posteriori error estimator for parameter identification problems. The state equation is given by a partial differential equation involving a finite number of unknown parameters. The presented error estimator aims to control the error in the parameters due to discretization by finite elements. For this, we consider the general setting of a partial differential equation written in weak form with abstract parameter dependence. Exploiting the special structure of the parameter identification problem, allows us to derive an error estimator which is cheap in comparison to the overall optimization algorithm. Several examples illustrating the behavior of an adaptive mesh refinement algorithm based on our error estimator are discussed in the numerical section. For the problems considered here, both, the efficiency of the estimator and the quality of the generated meshes are satisfactory.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Becker, R.: Adaptive Finite Elements for Optimal Control Problems. Habilitationsschrift, Institut für Angewandte Mathematik. Universität Heidelberg, 2001
Becker, R., Braack, M.: Gascoigne3D, A finite element toolkit for flow problems. SFB-preprint, Heidelberg, 2003
Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: Basic analysis and examples. [J] East-West J. Numer. Math. 4(4), 237–264 (1996)
Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. In: Acta Numerica 2001 A. Iserles, (ed), Cambridge: Cambridge University Press, 2001
Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J. Cont. Opt. 39(1), 113–132 (2000)
Becker, R., Vexler., B.: Mesh Adaptation for Parameter Identification Problems. In: Proc. of the 8th Conference on Control of Distributed Parameter Systems Graz, July 15-21, 2001, Intern. Series of Numerical Mathematics, 143, 41–56 (2002)
Bock, H.G.: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen. Bonner Mathematische Schriften, 1987
Carey, C.F., Oden, J.T.: Finite Elements, Computational Aspects. Vol. III. Prentice-Hall, 1984
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland Publishing Company, 1978
Clement, Ph.: Approximation by finite element functions using local regularization. [J] Revue Franc. Automat. Inform. Rech. Operat. 9(R-2), 77–84 (1975)
Dennis, J.E., Schnabel, R.B.: Numerical methods for unconstrained optimization and nonlinear equations. Number~16 in Classics in Applied Mathematics. SIAM, Society for Industrial and Applied Mathematics, 1996
Dieudonné, J.: Fondation of Modern Analysis. New York: Academic Press, 1960
Liu, W., Yan, N.: A posteriori error estimates for convex boundary control problems. SIAM J. Numer. Anal. 39(1), 73–99 (2001)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research, New York: Springer, 1999
Vexler, B.: A posteriori Fehlerschätzung und Gitteradaption bei Finite-Elemente- Approximationen nichtlinearer elliptischer Differentialgleichungen. Diplomarbeit, Universität Heidelberg, 2000
Author information
Authors and Affiliations
Corresponding author
Additional information
Mathematics Subject Classifications (2000): 65K10, 65N30, 49K20
This work has been supported by the German Research Foundation (DFG) through SFB 359 Reactive Flow, Diffusion and Transport and Graduiertenkolleg “Modellierung und wissenschaftliches Rechnen in Mathematik und Naturwissenschaften
Rights and permissions
About this article
Cite this article
Becker, R., Vexler, B. A posteriori error estimation for finite element discretization of parameter identification problems. Numer. Math. 96, 435–459 (2004). https://doi.org/10.1007/s00211-003-0482-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-003-0482-9