Skip to main content
Log in

A posteriori error estimation for finite element discretization of parameter identification problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

In this paper we develop an a posteriori error estimator for parameter identification problems. The state equation is given by a partial differential equation involving a finite number of unknown parameters. The presented error estimator aims to control the error in the parameters due to discretization by finite elements. For this, we consider the general setting of a partial differential equation written in weak form with abstract parameter dependence. Exploiting the special structure of the parameter identification problem, allows us to derive an error estimator which is cheap in comparison to the overall optimization algorithm. Several examples illustrating the behavior of an adaptive mesh refinement algorithm based on our error estimator are discussed in the numerical section. For the problems considered here, both, the efficiency of the estimator and the quality of the generated meshes are satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Becker, R.: Adaptive Finite Elements for Optimal Control Problems. Habilitationsschrift, Institut für Angewandte Mathematik. Universität Heidelberg, 2001

  2. Becker, R., Braack, M.: Gascoigne3D, A finite element toolkit for flow problems. SFB-preprint, Heidelberg, 2003

  3. Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: Basic analysis and examples. [J] East-West J. Numer. Math. 4(4), 237–264 (1996)

    MATH  Google Scholar 

  4. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. In: Acta Numerica 2001 A. Iserles, (ed), Cambridge: Cambridge University Press, 2001

  5. Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J. Cont. Opt. 39(1), 113–132 (2000)

    Article  MATH  Google Scholar 

  6. Becker, R., Vexler., B.: Mesh Adaptation for Parameter Identification Problems. In: Proc. of the 8th Conference on Control of Distributed Parameter Systems Graz, July 15-21, 2001, Intern. Series of Numerical Mathematics, 143, 41–56 (2002)

  7. Bock, H.G.: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen. Bonner Mathematische Schriften, 1987

  8. Carey, C.F., Oden, J.T.: Finite Elements, Computational Aspects. Vol. III. Prentice-Hall, 1984

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland Publishing Company, 1978

  10. Clement, Ph.: Approximation by finite element functions using local regularization. [J] Revue Franc. Automat. Inform. Rech. Operat. 9(R-2), 77–84 (1975)

  11. Dennis, J.E., Schnabel, R.B.: Numerical methods for unconstrained optimization and nonlinear equations. Number~16 in Classics in Applied Mathematics. SIAM, Society for Industrial and Applied Mathematics, 1996

  12. Dieudonné, J.: Fondation of Modern Analysis. New York: Academic Press, 1960

  13. Liu, W., Yan, N.: A posteriori error estimates for convex boundary control problems. SIAM J. Numer. Anal. 39(1), 73–99 (2001)

    Article  MATH  Google Scholar 

  14. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research, New York: Springer, 1999

  15. Vexler, B.: A posteriori Fehlerschätzung und Gitteradaption bei Finite-Elemente- Approximationen nichtlinearer elliptischer Differentialgleichungen. Diplomarbeit, Universität Heidelberg, 2000

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Becker.

Additional information

Mathematics Subject Classifications (2000): 65K10, 65N30, 49K20

This work has been supported by the German Research Foundation (DFG) through SFB 359 Reactive Flow, Diffusion and Transport and Graduiertenkolleg “Modellierung und wissenschaftliches Rechnen in Mathematik und Naturwissenschaften

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, R., Vexler, B. A posteriori error estimation for finite element discretization of parameter identification problems. Numer. Math. 96, 435–459 (2004). https://doi.org/10.1007/s00211-003-0482-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-003-0482-9

Keywords