Skip to main content
Log in

Uniform error estimates for a class of intermediate cylindrical shell problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

A uniform in thickness error estimate is obtained for a particular class of intermediate Koiter shell problems, solved with a classical conforming finite element method. The model problem is that of a cylinder under a class of irregular loads which, due to particular symmetries, allow a simplified reformulation on a one dimensional domain. The result is an almost h s error behavior in the H −1 dual norm, were s>0 depends on the load regularity. Such estimate is believable to be sharp (this additional claim is supported by some numerical tests).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auricchio, F., Beirão da Veiga, L., Lovadina, C.: Remarks on the asymptotic behaviour of Koiter shells. Computers and Structures 80, 735–745 (2002)

    Article  MathSciNet  Google Scholar 

  2. Baiocchi, C., Lovadina, C.: Interpolation theory and shell problems. Appl. Math. Lett. 13(7), 33–37 (2000)

    Article  MATH  Google Scholar 

  3. Baiocchi, C., Lovadina, C.: A shell classification by interpolation. Math. Models and Methods Appl. Sci. (to appear)

  4. Beirão da Veiga, L.: Theoretical and numerical study of shell intermediate states on particular toroidal and cylindrical problems. Ist. Lomb. Cad. Sci. Let. Rend. (A) 134, 133–161 (2000)

    Google Scholar 

  5. Bathe, K.J., Lee, P.S.: On the asymptotic behavior of shell structures and the evaluation in finite element solutions. Computer & Structures 80, 235–255 (2002)

    Google Scholar 

  6. Bergh, J., Löfstrom, J.: Interpolation Spaces: An Introduction. Springer, 1976

  7. Bernadou, M.: Finite Element Methods for Thin Shell Problems. John Wiley & Sons 1996

  8. Blouza, A., Brezzi, F., Lovadina, C.: A new classification for Shell Problems. Pubbl. I.A.N. Tech. Reports 1128, 1999

    Google Scholar 

  9. Blouza, A., Brezzi, F., Lovadina, C.: Sur la classification des coques linéarment élastiques. C.R. Acad. Sci. Paris., t.328 I, 831–836 (1999)

  10. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag 1991

  11. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer-Verlag 1994

  12. Chapelle, D., Bathe, K.J.: Fundamental consideration for the Finite Element analysis of shell structures. Computer & Structures 66, 19–36 (1998)

    Google Scholar 

  13. Chenais, D., Paumier, J.C.: On the locking phenomenon for a class of elliptic problems. Numer. Math. 67(4), 427–440 (1994)

    Article  MATH  Google Scholar 

  14. Choi, D., Palma, F.J., Sanches-Palencia, E., Vilariño, M.A.: Membrane locking in the finite element computation of very thin elastic shells. Rairo Model. Math. Anal. Numer. 32(2), 131–152 (1998)

    MATH  Google Scholar 

  15. Ciarlet, P.G.: Introduction to linear Shell Theory, Series in Applied Mathematics. Gauthiers-Villairs 1998

  16. Hakula, H., Leino, Y., Pitkäranta, J.: Scale resolution, locking, and high order finite element modelling of shells. Comp. Meth. Appl. Mech. Engrg 133, 157–182 (1996)

    Article  MATH  Google Scholar 

  17. Leino, Y., Ovaskien, O., Pitkäranta, J.: Shell deformation states and the finite element method: a benchmark study of cylindrical shells. Comp. Meth. Appl. Mech. Engrg 127, 81–121 (1995)

    MathSciNet  Google Scholar 

  18. Lions, J.L.: Perturbations singulieres dans les problemes aux limites non linéaires. Lecture Notes in Math. 323, Springer, Berlin 1973

  19. Lions, J.L., Peetre, J.: Sur une classe d’espaces d’interpolation. Publ. I.H.E.S. 19, 5–68 (1964)

    MATH  Google Scholar 

  20. Pitkäranta, J.: The problem of membrane locking in finite element analysis of cylindrical shells. Numer. Math. 61(4), 523–542 (1992)

    Google Scholar 

  21. Sanchez-Palencia, E.: Asymptotic and spectral properties of a class of singular-stiff problems. J. Math. Pures Appl. 71, 379–406 (1992)

    MathSciNet  MATH  Google Scholar 

  22. Schwab, C., Suri, M., Xenophontos, C.: The hp finite element method for problems in mechanics with boundary layers. Comput. Methods Appl. Mech. Engrg 157, 311–333 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Beirão da Veiga.

Additional information

Mathematics Subject Classification (2000): 65N30

Received: 17, October 2001

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veiga, L. Uniform error estimates for a class of intermediate cylindrical shell problems. Numer. Math. 96, 661–689 (2004). https://doi.org/10.1007/s00211-003-0484-7

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-003-0484-7

Keywords