Summary.
A uniform in thickness error estimate is obtained for a particular class of intermediate Koiter shell problems, solved with a classical conforming finite element method. The model problem is that of a cylinder under a class of irregular loads which, due to particular symmetries, allow a simplified reformulation on a one dimensional domain. The result is an almost h s error behavior in the H −1 dual norm, were s>0 depends on the load regularity. Such estimate is believable to be sharp (this additional claim is supported by some numerical tests).
Similar content being viewed by others
References
Auricchio, F., Beirão da Veiga, L., Lovadina, C.: Remarks on the asymptotic behaviour of Koiter shells. Computers and Structures 80, 735–745 (2002)
Baiocchi, C., Lovadina, C.: Interpolation theory and shell problems. Appl. Math. Lett. 13(7), 33–37 (2000)
Baiocchi, C., Lovadina, C.: A shell classification by interpolation. Math. Models and Methods Appl. Sci. (to appear)
Beirão da Veiga, L.: Theoretical and numerical study of shell intermediate states on particular toroidal and cylindrical problems. Ist. Lomb. Cad. Sci. Let. Rend. (A) 134, 133–161 (2000)
Bathe, K.J., Lee, P.S.: On the asymptotic behavior of shell structures and the evaluation in finite element solutions. Computer & Structures 80, 235–255 (2002)
Bergh, J., Löfstrom, J.: Interpolation Spaces: An Introduction. Springer, 1976
Bernadou, M.: Finite Element Methods for Thin Shell Problems. John Wiley & Sons 1996
Blouza, A., Brezzi, F., Lovadina, C.: A new classification for Shell Problems. Pubbl. I.A.N. Tech. Reports 1128, 1999
Blouza, A., Brezzi, F., Lovadina, C.: Sur la classification des coques linéarment élastiques. C.R. Acad. Sci. Paris., t.328 I, 831–836 (1999)
Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag 1991
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer-Verlag 1994
Chapelle, D., Bathe, K.J.: Fundamental consideration for the Finite Element analysis of shell structures. Computer & Structures 66, 19–36 (1998)
Chenais, D., Paumier, J.C.: On the locking phenomenon for a class of elliptic problems. Numer. Math. 67(4), 427–440 (1994)
Choi, D., Palma, F.J., Sanches-Palencia, E., Vilariño, M.A.: Membrane locking in the finite element computation of very thin elastic shells. Rairo Model. Math. Anal. Numer. 32(2), 131–152 (1998)
Ciarlet, P.G.: Introduction to linear Shell Theory, Series in Applied Mathematics. Gauthiers-Villairs 1998
Hakula, H., Leino, Y., Pitkäranta, J.: Scale resolution, locking, and high order finite element modelling of shells. Comp. Meth. Appl. Mech. Engrg 133, 157–182 (1996)
Leino, Y., Ovaskien, O., Pitkäranta, J.: Shell deformation states and the finite element method: a benchmark study of cylindrical shells. Comp. Meth. Appl. Mech. Engrg 127, 81–121 (1995)
Lions, J.L.: Perturbations singulieres dans les problemes aux limites non linéaires. Lecture Notes in Math. 323, Springer, Berlin 1973
Lions, J.L., Peetre, J.: Sur une classe d’espaces d’interpolation. Publ. I.H.E.S. 19, 5–68 (1964)
Pitkäranta, J.: The problem of membrane locking in finite element analysis of cylindrical shells. Numer. Math. 61(4), 523–542 (1992)
Sanchez-Palencia, E.: Asymptotic and spectral properties of a class of singular-stiff problems. J. Math. Pures Appl. 71, 379–406 (1992)
Schwab, C., Suri, M., Xenophontos, C.: The hp finite element method for problems in mechanics with boundary layers. Comput. Methods Appl. Mech. Engrg 157, 311–333 (1998)
Author information
Authors and Affiliations
Corresponding author
Additional information
Mathematics Subject Classification (2000): 65N30
Received: 17, October 2001
Rights and permissions
About this article
Cite this article
Veiga, L. Uniform error estimates for a class of intermediate cylindrical shell problems. Numer. Math. 96, 661–689 (2004). https://doi.org/10.1007/s00211-003-0484-7
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-003-0484-7