Skip to main content
Log in

A semi-discrete scheme for the stochastic nonlinear Schrödinger equation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

We study the convergence of a semi-discretized version of a numerical scheme for a stochastic nonlinear Schrödinger equation. The nonlinear term is a power law and the noise is multiplicative with a Stratonovich product. Our scheme is implicit in the deterministic part of the equation as is usual for conservative equations. We also use an implicit discretization of the noise which is better suited to Stratonovich products. We consider a subcritical nonlinearity so that the energy can be used to obtain an a priori estimate. However, in the semi discrete case, no Ito formula is available and we have to use a discrete form of this tool. Also, in the course of the proof we need to introduce a cut-off of the diffusion coefficient, which allows to treat the nonlinearity. Then, we prove convergence by a compactness argument. Due to the presence of noise and to the implicit discretization of the noise, this is rather complicated and technical. We finally obtain convergence of the discrete solutions in various topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)

    MathSciNet  MATH  Google Scholar 

  2. Bang, O., Christiansen, P.L., If, F., Rasmussen, K.O., Gaididei, Y.B.: Temperature effects in a nonlinear model of monolayer Scheibe aggregates. Phys. Rev. E 49, 4627–4636 (1994)

    Article  Google Scholar 

  3. Bensoussan, A.: Stochastic Navier-Stokes equations. Acta Appl. Math. 38, 267–304 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Bensoussan, A., Temam, R.: Equations stochastiques de type Navier-Stokes. J. Funct. Anal. 13, 195–222 (1973)

    MATH  Google Scholar 

  5. Brzezniak, Z.: On stochastic convolution in Banach spaces, and applications. Stochastics Stochastics Rep. 61, 245–295 (1997)

    MATH  Google Scholar 

  6. Brzezniak, Z., Peszat, S.: Space-time continuous solutions to SPDE’s driven by a homogeneous Wiener process. Studia Math. 137, 261–299 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Christiansen, P.L., Rasmussen, K.O., Bang, O., Gaididei, Y.B.: The temperature-dependent collapse regime in a nonlinear dynamical model of Scheibe aggregates. Phys. D 87, 321–324 (1995)

    Article  Google Scholar 

  8. Colin, T., Fabrie, P.: Semidiscretization in time for nonlinear Schrödinger-waves equations. Disc. Cont. Dynam. Systems 4, 671–690 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Application, Cambridge University Press, Cambridge, 1992

  10. de Bouard, A., Debussche, A.: On the stochastic Korteweg-de Vries equation. J. Funct. Anal. 154, 215–251 (1998)

    Article  MATH  Google Scholar 

  11. de Bouard, A., Debussche, A.: A stochastic nonlinear Schrödinger equation with multiplicative noise. Comm. Math. Phys. 205, 161–181 (1999)

    Article  MATH  Google Scholar 

  12. de Bouard, A., Debussche, A.: On the effect of a noise on the solutions of supercritical nonlinear Schrödinger equation. Probab. Theory Relat. Fields 123, 76–96 (2002)

    Article  MATH  Google Scholar 

  13. de Bouard, A., Debussche, A.: The stochastic nonlinear Schrödinger equation in H 1. Stoch. Anal. Appl. 21, 97–126 (2003)

    Article  MATH  Google Scholar 

  14. Debussche, A., Di Menza, L.: Numerical simulation of focusing stochastic nonlinear Schrödinger equations. Physica D 162, 131–154 (2002)

    Article  MATH  Google Scholar 

  15. Delfour, M., Fortin, M., Payre, G.: Finite difference solutions of a nonlinear Schrödinger equation. J. Comp. Phys. 44, 277–288 (1981)

    MathSciNet  MATH  Google Scholar 

  16. Falkovich, G.E., Kolokolov, I., Lebedev, V., Turitsyn, S.K.: Statistics of soliton-bearing systems with additive noise. Phys. Rev. E 63, (2001)

  17. Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Relat. Fields 102, 367–391 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Friedman, A.: Partial differential equations. Holt, Rinehart and Winston, New York, 1969

  19. Gyöngy, I.: Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise I. Potential Anal. 9(1), 1–25 (1998)

    Article  Google Scholar 

  20. Gyöngy, I.: Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II. Potential Anal. 11(1), 1–37 (1999)

    Article  Google Scholar 

  21. Gyöngy, I., Krylov, N.V.: Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Relat. Fields 105, 143–158 (1996)

    Article  MathSciNet  Google Scholar 

  22. Gyöngy, I., Nualart, D.: Implicit scheme for stochastic parabolic partial differential equations driven by space-time white noise. Potential Anal. 7(4), 725–757 (1997)

    Article  Google Scholar 

  23. Hausenblas, E.: Numerical Analysis of semilinear stochastic evolution equations in Banach spaces. J. Comput. Appl. Math. 147, 485–516 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hausenblas, E.: Approximation of semilinear stochastic evolution equations. Potential Anal. 18, 141–186 (2003)

    Article  MATH  Google Scholar 

  25. Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations. Applications of Mathematics, 23, Springer-Verlag, Berlin, 1992

  26. Milstein, G.N., Repin, Y.P., Tretyakov, M.V.: Mean-square symplectic methods for Hamiltonian systems with multiplicative noise. Preprint, Berlin, 2001

  27. Pardoux, E.: Intégrales stochastiques hilbertiennes. Cahiers Mathématiques de la Décision No. 7617, Université de Paris Dauphine, Paris, 1976

  28. Printems, J.: On the discretization in time of parabolic stochastic partial differential equations. M2AN Math. Model. Numer. Anal. 35, 1055–1078 (2001)

    Google Scholar 

  29. Rasmussen, K.O., Gaididei, Y.B., Bang, O., Christiansen, P.L.: The influence of noise on critical collapse in the nonlinear Schrödinger equation. Phys. Letters A 204, 121–127 (1995)

    Article  Google Scholar 

  30. Sanz-Serna, J.M.: Methods for the numerical solution of the nonlinear Schrödinger equation. Math. Comp. 43, 21–27 (1984)

    MathSciNet  MATH  Google Scholar 

  31. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, NJ, 1970

  32. Talay, D.: Discrétisation d’une équation différentielle stochastique et calcul approché d’espérances de fonctionnelles de la solution. RAIRO Modél. Math. Anal. Numér. 20(1), 141–179 (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Debussche.

Additional information

Mathematics Subject Classification (2000): 35Q55, 60H15, 65M06, 65M12

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Bouard, A., Debussche, A. A semi-discrete scheme for the stochastic nonlinear Schrödinger equation. Numer. Math. 96, 733–770 (2004). https://doi.org/10.1007/s00211-003-0494-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-003-0494-5

Keywords

Navigation