Skip to main content
Log in

Numerical approximation of entropy solutions for hyperbolic integro-differential equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

Scalar hyperbolic integro-differential equations arise as models for e.g. radiating or self-gravitating fluid flow. We present finite volume schemes on unstructured grids applied to the Cauchy problem for such equations. For a rather general class of integral operators we show convergence of the approximate solutions to a possibly discontinuous entropy solution of the problem. For a specific model problem in radiative hydrodynamics we introduce a convergent fully discrete finite volume scheme. Under the assumption of sufficiently fast spatial decay of the entropy solution we can even establish the convergence rate h 1/4|ln(h)| where h denotes the grid parameter. The convergence proofs rely on appropriate variants of the classical Kruzhkov method for local balance laws together with a truncation technique to cope with the nonlocal character of the integral operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chainais-Hillairet, C., Champier, S.: Finite volume schemes for nonhomogeneous scalar conservation laws. Error estimate. Numer. Math. 88(4), 607–639 (2001)

    MATH  Google Scholar 

  2. Cockburn, B., Coquel, F., Lefloch, P.: An error estimate for finite volume methods for multidimensional conservation laws. Math. Comput. 63(207), 77–103 (1994)

    MATH  Google Scholar 

  3. Dedner, A., Rohde, C.: Existence uniqueness and regularity of weak solutions for a model problem in radiative gas dynamics. In preparation

  4. Dedner, A.: Solving the system of radiattion magnetohydrodynamics. Albert– Ludwigs–Universität, Fakultät für Mathematik und Physik. Freiburg, http://www. freidok.uni-freiburg.de/volltexte/1098/ (September 2003)

  5. Dedner, A., Vollmöller, P.: An adaptive higher order method for solving the radiation transport equation on unstructured grids. J. Comput. Phys. 178(2), 263–289 (2002)

    Article  MATH  Google Scholar 

  6. Engelberg, S., Liu, H., Tadmor E.: Critical thresholds in Euler-Poisson equations. Indiana Univ. Math. J. 50, 109–157 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Eymard, R., Gallouët, T., Ghilani, M., Herbin R.: Error Estimates for the Approximate Solutions of a Nonlinear Hyperbolic Equation Given by some Finite Volume Schemes. IMA J. Numer. Anal. 18, 563–594 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet P.G. et al., (eds.), Handbook of numerical analysis. Vol. 7, Solution of equations in R n (Part 3). Techniques of scientific computing (Part 3). North-Holland/Elsevier, 2000

  9. Hamer, K.: Nonlinear effects on the propagation of sound waves in a radiating gas. Quart. J. Mech. Appl. Math. 24, 155–168 (1971)

    MATH  Google Scholar 

  10. Katsaounis, T., Makridakis, C.: Finite volume relaxation schemes for multidimensional conservation laws. Math. Comput. 70(234), 533–553 (2001)

    Article  MATH  Google Scholar 

  11. Kawashima, S., Nikkuni, Y., Nishibata, S.: The initial value problem for hyperbolic-elliptic coupled systems and applications to radiation hydrodynamics. Freistühler H. Analysis of systems of conservation laws. Chapman & Hall/CRC, 1998

  12. Kröner, D.: Numerical schemes for conservation laws. Wiley, 1997

  13. Kröner, D., Rokyta, M.: Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal. 31(2), 324–343 (1994)

    Google Scholar 

  14. Kruzhkov, S.N.: First order quasilinear equations in several independent variables. Math. USSR Sb. 10, 217–243 (1970)

    MATH  Google Scholar 

  15. Mihalas, D.: Radiation hydrodynamics. Steiner O. et al., Computational methods for astrophysical fluid flow. Springer, 1998

  16. Noelle, S.: A note on entropy inequalities and error estimates for higher-order accurate finite volume schemes on irregular families of grids. Math. Comput. 65(215), 1155–1163 (1996)

    Article  MATH  Google Scholar 

  17. Rohde, C.: Upwind finite volume schemes for weakly coupled hyperbolic systems of conservation laws in 2D. Numer. Math. 81(1), 85–123 (1998)

    Article  MATH  Google Scholar 

  18. Treiber, M., Hennecke, A., Helbing, D.: Derivation Properties and Simulation of a Gas-Kinetic-Based Non-Local Traffic Model. Phys. Rev. E. 59, 239–253 (1999)

    Article  Google Scholar 

  19. Vila, J.-P.: Convergence and error estimate in finite volume schemes for general multidimensional conservation laws. Math. Model. Numer. Anal. 28, 267–285 (1994)

    MATH  Google Scholar 

  20. Vincenti, W.G., Krueger, C.H.: Introduction to physical gas dynamics. Wiley, 1965

  21. Zel’dovich, Y.B., Rajzer, Y.P.: Physics of shock waves and high temperature hydrodynamic phenomena. Academic Press, 1966

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Rohde.

Additional information

Mathematics Subject Classification (2000): 35L65, 35Q35, 65M15

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dedner, A., Rohde, C. Numerical approximation of entropy solutions for hyperbolic integro-differential equations. Numer. Math. 97, 441–471 (2004). https://doi.org/10.1007/s00211-003-0502-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-003-0502-9

Keywords

Navigation