Skip to main content
Log in

Kinetic schemes for the relativistic gas dynamics

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

A kinetic solution for the relativistic Euler equations is presented. This solution describes the flow of a perfect gas in terms of the particle density n, the spatial part of the four-velocity u and the inverse temperature β. In this paper we present a general framework for the kinetic scheme of relativistic Euler equations which covers the whole range from the non-relativistic limit to the ultra-relativistic limit. The main components of the kinetic scheme are described now. (i) There are periods of free flight of duration τ M , where the gas particles move according to the free kinetic transport equation. (ii) At the maximization times t n =nτ M , the beginning of each of these free-flight periods, the gas particles are in local equilibrium, which is described by Jüttners relativistic generalization of the classical Maxwellian phase density. (iii) At each new maximization time t n >0 we evaluate the so called continuity conditions, which guarantee that the kinetic scheme satisfies the conservation laws and the entropy inequality. These continuity conditions determine the new initial data at t n . iv If in addition adiabatic boundary conditions are prescribed, we can incorporate a natural reflection method into the kinetic scheme in order to solve the initial and boundary value problem. In the limit τ M →0 we obtain the weak solutions of Euler’s equations including arbitrary shock interactions. We also present a numerical shock reflection test which confirms the validity of our kinetic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. Acta Phys. Pol. 23, (1964); Phys. Rev. 94, 511 (1954)

    Google Scholar 

  2. Cercignani, C.: The Boltzmann equation and its applications. Appl. Math. Sci. 67, Springer-Verlag, New York, 1988

  3. Chernikov, N.A.: Equilibrium distribution of the relativistic gas. Acta Phys. Pol. 26, 1069–1092 (1964)

    Google Scholar 

  4. Chernikov, N.A.: Microscopic foundation of relativistic hydrodynamics. Acta Phys. Pol. 27, 465–489 (1964)

    MATH  Google Scholar 

  5. Dafermos, C.M.: Entropy and the stability of classical solutions of hyperbolic systems of conservation laws. In: Recent Mathematical Methods in Nonlinear Wave Propagation, Montecatini terme, Ruggeri T. (ed.), 1994, pp. 48–69

  6. Dreyer, W., Kunik, M.: The maximum entropy principle revisited. Cont. Mech. Thermodyn. 10, 331–347 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dreyer, W., Kunik, M.: Reflections of Eulerian shock waves at moving adiabatic boundaries. Monte Carlo Methods and Appl. 4, 231–252 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Dreyer, W., Kunik, M.: Initial and boundary value problems of hyperbolic heat conduction. Cont. Mech. Thermodyn. 11(4), 227–245 (1999)

    Article  MATH  Google Scholar 

  9. Dreyer, W., Herrmann, M., Kunik, M.: Kinetic schemes and initial boundary value problems for the Euler system. WIAS-Preprint No. 607, Berlin, 2000

  10. Dreyer, W., Junk, M., Kunik, M.: On the approximation of the Fokker-Planck equation by moment systems. To appear in the journal Nonlinearity, 2001

  11. Eckart, C.: The thermodynamics of irreversible process I: The simple fluid. Phys. Rev. 58, 267–269 (1940)

    Article  MATH  Google Scholar 

  12. Eckart, C.: The thermodynamics of irreversible process II: Fluid mixtures. Phys. Rev. 58, 269–275 (1940)

    Article  MATH  Google Scholar 

  13. Eckart, C.: The thermodynamics of irreversible process III: Relativistic theory of the simple fluid. Phys. Rev. 58, 919–928 (1940)

    Article  MATH  Google Scholar 

  14. Friedrichs, K.O., Lax, P.D.: Systems of conservation equations with a convex extension. Proc. Acad. Sci. USA 68, 1686 (1971)

    MATH  Google Scholar 

  15. Godlewski, E., Raviart, P.A.: Numerical approximation of hyperbolic systems of conservation laws. Applied Mathematical Sciences 118, Springer-Verlag, New York, 1996

  16. deGroot, S.R., van Leeuven, W.A., van Weert, Ch.G.: Relativistic kinetic theory. Principles and Applications. North Holland, Amsterdam, 1980

  17. Israel, W.: Nonstationary irreversible thermodynamics: a causal relativistic theory. Ann. Phys. (N.Y.) 100, 310–331 (1976)

    Google Scholar 

  18. Jüttner, F.: Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie. Ann. Phys. (Leipzig) 34, 856–882 (1911)

    Google Scholar 

  19. Jeffrey, A.: Hand Book of Mathematical Formulas and Integrals. Academic Press, 1995

  20. Jüttner, F.: Die Relativistische Quantentheorie des idealen Gases. Z. Phys. 47, 542–566 (1928)

    Google Scholar 

  21. Kunik, M., Qamar, S., Warnecke, G.: Kinetic Schemes for the Ultra-relativistic Euler Equations. Preprint Nr. 21, Otto-von-Guericke University, 2001

  22. Müller, I.: Speeds of propagation in classical and relativistic extended thermodynamics. Published by the Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Germany, 1999

  23. Perthame, B.: Global existence of solutions to the BGK model of Boltzmann equation. J. Diff. Eq. 82, 191–205 (1989)

    MathSciNet  MATH  Google Scholar 

  24. Perthame, B.: Boltzmann type schemes for gas dynamics and the entropy property. SIAM J. Numer. Anal. 27(6), 1405–1421 (1990)

    MATH  Google Scholar 

  25. Perthame, B.: The kinetic approach to systems of conservation laws. In: Herrero M.A., Zuazua A. (eds), Recent advances in partial differential equations. Chichester: Wiley and Mason, 1994, pp. 85–97

  26. Weinberg, S.: Gravitation and Cosmology. Wiley, New York, 1972

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamsul Qamar.

Additional information

Mathematics Subject Classification (1991):65M99, 76Y05

This work is supported by the project ‘‘Long-time behaviour of nonlinear hyperbolic systems of conservation laws and their numerical approximation’’, contract # DFG WA 633/7-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunik, M., Qamar, S. & Warnecke, G. Kinetic schemes for the relativistic gas dynamics. Numer. Math. 97, 159–191 (2004). https://doi.org/10.1007/s00211-003-0510-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-003-0510-9

Keywords

Navigation