Skip to main content
Log in

Kinetic approximation of a boundary value problem for conservation laws

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

We design numerical schemes for systems of conservation laws with boundary conditions. These schemes are based on relaxation approximations taking the form of discrete BGK models with kinetic boundary conditions. The resulting schemes are Riemann solver free and easily extendable to higher order in time or in space. For scalar equations convergence is proved. We show numerical examples, including solutions of Euler equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amadori, D.: Initial-boundary value problems for nonlinear systems of conservation laws. Nonlinear Differ. Equ. Appl. 4, 1–42 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Aregba-Driollet, D., Natalini, R.: Discrete kinetic schemes for multidimensional conservation laws. SIAM J. Num. Anal. 37(6), 1973–2004 (2000)

    Article  MATH  Google Scholar 

  3. Bardos, C., le Roux, A. Y., Nédélec, J.-C.: First order quasi-linear equations with boundary conditions. Comm. Partial Differential Equations. 4(9) 1017–1034 (1979)

    Google Scholar 

  4. Benabdallah, A.: The p-system on an interval. C. R. Acad. Sci. Paris Sér. I Math. 303(4), 123–126 (1986)

    MATH  Google Scholar 

  5. Benabdallah, A., Serre, D.: Problèmes aux limites pour des systèmes hyperboliques non linéaires de deux équations à une dimension d’espace. C. R. Acad. Sci. Paris Sér. I Math.. 305(15), 677–680 (1987)

    MATH  Google Scholar 

  6. Benharbit, S., Chalabi, A., Vila, J.-P.: Numerical viscosity and convergence of finite volume methods for conservation laws with boundary conditions. SIAM J. Numer. Anal. 32(3), 775–796 (1995)

    MATH  Google Scholar 

  7. Berthelin, F., Bouchut, F.: Weak entropy boundary conditions for isentropic gas dynamics via kinetic relaxation. J. Diff. Eq. To appear, 2002

  8. Bouchut, F.: Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Statist. Phys. 95(1–2), 113–170 (1999)

    Google Scholar 

  9. Bouchut, F., Bourdarias, C., Perthame, B.: A MUSCL method satisfying all the numerical entropy inequalities. Math. Comp. 65(216), 1439–1461 (1996)

    Article  MATH  Google Scholar 

  10. Chalabi, A., Seghir, D.: Convergence of relaxation schemes for initial boundary value problems for conservation laws Preprint 1999

  11. Collet, J.F., Rascle, M.: Convergence of the relaxation approximation to a scalar nonlinear hyperbolic equation arising in chromatography. Z. Angew. Math. Phys. 47, 400–409 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Coquel, F., LeFloch, P.G.: Convergence of the finite volume method for multidimensional conservation laws. SIAM J. Numer. Anal. 32(3), 687–705 (1995)

    MATH  Google Scholar 

  13. Crandall, M., Majda, A.: Monotone difference approximations for scalar conservation laws. Math. of Comp . 34, 1–21 (1980)

    MathSciNet  MATH  Google Scholar 

  14. Desprès et Frédéric Lagoutière, B: Un schéma non linéaire anti-dissipatif pour l’équation d’advection linéaire C. R. Acad. Sci. Paris Sér. I Math.. 328(10), 939–944 (1999)

    Google Scholar 

  15. DiPerna, R. J.: Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal. 82(1), 27–70 (1983)

    MATH  Google Scholar 

  16. Dubois, F., LeFloch, P.: Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differential Equations. 71(1), 93–122 (1988)

    MATH  Google Scholar 

  17. Gisclon, M., Serre, D.: Conditions aux limites pour un système strictement hyperbolique fournies par le schéma de Godunov”. RAIRO Modélisation Mathématique et Analyse Numérique. 31(3), 359–380 (1997)

    MATH  Google Scholar 

  18. Goodman, J.B.: Initial-boundary value problems for hyperbolic systems of conservation laws. Thesis, Stanford University, 1981

  19. Gustafsson, B., Kreiss, H.-O., Sundström, A.: Stability theory of difference approximations for mixed initial boundary value problems. II. Math. Comp. 26, 649–686 (1972)

    MATH  Google Scholar 

  20. Hanouzet, B., Natalini, R.: Weakly coupled systems of quasilinear hyperbolic equations, Differential Integral Equations 9(6), 1279–1292 (1996)

    Google Scholar 

  21. Harten, A.: On a class of high resolution total-variation-stable finite difference schemes, SIAM J.Num.Anal. 21, 1–23 (1984)

    Google Scholar 

  22. Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov–type schemes for hyperbolic conservation laws. SIAM Rev. 25, 35–61 (1983)

    MathSciNet  MATH  Google Scholar 

  23. James, F.: Convergence results for some conservation laws with a reflux boundary condition and a relaxation term arising in chemical engineering. SIAM J. Math. Anal., 1998. in press.

  24. Jin, S., Xin, Z.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl. Math.. 48, 235–277 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Kan, P.T., Santos, M.M., Xin, Z.: Initial-boundary value problem for conservation laws. Comm. Math. Phys. 186(3), 701–730 (1997)

    Article  MATH  Google Scholar 

  26. Kreiss, H.-O.: Initial-boundary value problems for hyperbolic systems. Comm. Pure Appl. Math. 23, 277–298 (1970)

    MATH  Google Scholar 

  27. Kružkov, S.N.: First order quasilinear equations in several independent variables. Math. USSR Sb. 10, 217–243 (1970)

    MATH  Google Scholar 

  28. Le Roux, A.-Y.: étude du problème mixte pour une équation quasi-linéaire du premier ordre. C. R. Acad. Sci. Paris. Sér. A-B 285(5), 351–354 (1977)

    MATH  Google Scholar 

  29. Le Roux, A.-Y.: Approximation of initial and boundary value problems for quasilinear first order equations. Computational mathematics (Warsaw, 1980), 21–31, (1984)

    Google Scholar 

  30. Liu, T.-P.: Hyperbolic conservation laws with relaxation. Comm. Math. Phys. 108, 153–175 (1987)

    MathSciNet  MATH  Google Scholar 

  31. Liu, T.-P.: Initial-boundary value problems for gaz dynamics. Arch. Rational Mech. Anal. 64(2), 137–168 (1977)

    Google Scholar 

  32. Liu, H., Yong, W.-A.: Time-asymptotic stability of boundary-layers for a hyperbolic relaxation system. Comm. Partial Differential Equations 26(7–8), 1323–1343 (2001)

    Google Scholar 

  33. Málek et al, J.: Weak and measure-valued solutions to evolutionary PDEs. Chapman & Hall, London, 1996

  34. Milišić, V.: Stability and convergence of discrete kinetic approximations to an initial-boundary value problem for conservation laws. Proceeding of the Amer. Math. Soc. to appear

  35. Natalini, R.: Convergence to equilibrium for the relaxation approximations of conservation laws. Comm. Pure Appl. Math. 49(8), 795–823 (1996)

    Article  MATH  Google Scholar 

  36. Natalini, R.: A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws. J. Differential Equations. 148(2), 292–317 (1998)

    Article  MATH  Google Scholar 

  37. Natalini, R., Terracina, A.: Convergence of a relaxation approximation to a boundary value problem for conservation laws. Comm. Partial Differential Equations 26(7–8), 1235–1252 (2001)

    Google Scholar 

  38. Nishibata, S.: The initial-boundary value problems for hyperbolic conservation laws with relaxation. J. Differential Equations. 130(1), 100–126 (1996)

    Article  MATH  Google Scholar 

  39. Nouri, A., Omrane, A., Vila, J. P.: Boundary conditions for scalar conservation laws from a kinetic point of view. J. Statist. Phys., 94(5–6), 779–804 (1999)

    Google Scholar 

  40. Otto, F.: Initial-boundary value for a scalar conservation law. C. R. Acad. Sci. Paris Sér. I Math. 322(8), 729–734 (1996)

    MATH  Google Scholar 

  41. Perthame, B.: Boltzmann type schemes for gas dynamics and the entropy property. SIAM J. Numer. Anal., 27(6), 1405–1421 (1990)

    Google Scholar 

  42. Sanders, R.H., Prendergast, K.H.: On the origin of the 3-kiloparsec arm. Ap. J. 188, 489–500 (1974)

    Article  Google Scholar 

  43. Serre, D.: Relaxation semi-linéaire et cinétique des systèmes de lois de conservation. Ann. Inst. H. Poincaré Anal. Non Linéaire. 17(2), 169–192 (2000)

    Article  MATH  Google Scholar 

  44. Szepessy, A.: Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions. RAIRO Modél. Math. Anal. Numér. 25(6), 749–782 (1991)

    MATH  Google Scholar 

  45. Vovelle, J.: Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math. 90(3), 563–596 (2002)

    Article  MATH  Google Scholar 

  46. Wang, W.C., Xin, Z.: Asymptotic limit of initial-boundary value problems for conservation laws with relaxational extensions. Comm. Pure Appl. Math. 51(5), 505–535 (1998)

    Article  MATH  Google Scholar 

  47. Whitham, J.: Linear and nonlinear waves. Wiley, New York, 1974

  48. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)

    MATH  Google Scholar 

  49. Yong, W.A.: Boundary conditions for hyperbolic systems with stiff source terms. Indiana Univ. Math. J. 48(1), 115–137 (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Aregba-Driollet.

Additional information

Mathematics Subject Classification (2000): 65M06, 65M12, 76M20

Correspondence to: D. Aregba-Driollet

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aregba-Driollet, D., Milišić, V. Kinetic approximation of a boundary value problem for conservation laws. Numer. Math. 97, 595–633 (2004). https://doi.org/10.1007/s00211-003-0514-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-003-0514-5

Keywords

Navigation