Skip to main content
Log in

Discrete minimum and maximum principles for finite element approximations of non-monotone elliptic equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

Uniform lower and upper bounds for positive finite-element approximations to semilinear elliptic equations in several space dimensions subject to mixed Dirichlet-Neumann boundary conditions are derived. The main feature is that the non-linearity may be non-monotone and unbounded. The discrete minimum principle provides a positivity-preserving approximation if the discretization parameter is small enough and if some structure conditions on the non-linearity and the triangulation are assumed. The discrete maximum principle also holds for degenerate diffusion coefficients. The proofs are based on Stampacchia’s truncation technique and on a variational formulation. Both methods are settled on careful estimates on the truncation operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ancona, M.: Diffusion-drift models of strong inversion layers. COMPEL 6, 11–18 (1987)

    Google Scholar 

  2. Ben Abdallah, N., Unterreiter, A.: On the stationary quantum drift-diffusion model. Z. Angew. Math. Phys. 49, 251–275 (1998)

    Article  MATH  Google Scholar 

  3. Bertolazzi, E.: Discrete conservation and discrete maximum principle for elliptic PDEs. Math. Models Meth. Appl. Sci. 8, 685–711 (1998)

    Article  MATH  Google Scholar 

  4. Burman, E., Ern, A.: Nonlinear diffusion and discrete maximum principle for stabilized Galerkin approximations of the convection-diffusion-reaction equation. Comput. Meth. Appl. Mech. Engin. 191, 3833–3855 (2002)

    Article  MATH  Google Scholar 

  5. Christie, I., Hall, C.: The maximum principle for bilinear elements. Internat. J. Numer. Meth. Engin. 20, 549–553 (1984)

    MATH  Google Scholar 

  6. Ciarlet, P., Lions, J.L.: Handbook of Numerical Analysis. Finite Element Methods (Part 1). North-Holland, Amsterdam, 1991

  7. Ciarlet, P., Raviart, P.: Maximum principle and uniform convergence for the finite element method. Comput. Meth. Appl. Mech. Engin. 2, 17–31 (1973)

    Article  MATH  Google Scholar 

  8. Cortey-Dumont, P.: On finite element approximation in the L-norm of variational inequalities. Numer. Math. 47, 45–57 (1985)

    MATH  Google Scholar 

  9. Ishihara, K.: On finite element schemes of the Dirichlet problem for a system of nonlinear elliptic equations. Numer. Funct. Anal. Optim. 3, 105–136 (1981)

    MATH  Google Scholar 

  10. Ishihara, K.: Strong and weak discrete maximum principles for matrices associated with elliptic problems. Lin. Algebra Appl. 88/89, 431–448 (1987)

    Google Scholar 

  11. Jüngel, A.: Quasi-hydrodynamic Semiconductor Equations. Birkhäuser, Basel, 2001

  12. Jüngel, A., Pinnau, R.: A positivity-preserving numerical scheme for a fourth-order parabolic equation. SIAM J. Numer. Anal. 39, 385–406 (2001)

    Article  Google Scholar 

  13. Kerkhoven, T., Jerome, J.: L stability of finite element approximations to elliptic gradient equations. Numer. Math. 57, 561–575 (1990)

    MATH  Google Scholar 

  14. Korotov, S., Křížik, M.: Acute type refinements of tetrahedral partitions of polyhedral domains. SIAM J. Numer. Anal. 39, 724–733 (2001)

    Article  MATH  Google Scholar 

  15. Korotov, S., Křížik, M., Neittaanmäki, P.: Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle. Math. Comput. 70, 107–119 (2001)

    MATH  Google Scholar 

  16. Kuo, H.-J., Trudinger, N.: A note on the discrete Aleksandrov-Bakelman maximum principle. Taiwanese J. Math. 4, 55–64 (2000)

    MATH  Google Scholar 

  17. Markowich, P., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Springer, Vienna, 1990

  18. Micheletti, S., Sacco, R., Simioni, P.: Numerical simulation of resonant tunneling diodes with a quantum drift-diffusion model. Submitted for publication, 2003

  19. Pinnau, R.: Uniform convergence of an exponentially fitted scheme for the quantum drift-diffusion model. Submitted for publication, 2003

  20. Pinnau, R., Unterreiter, A.: The stationary current-voltage characteristics of the quantum drift-diffusion model. SIAM J. Numer. Anal. 37, 211–245 (1999)

    Article  MATH  Google Scholar 

  21. Schatz, A.: A weak discrete maximum principle and stability of the finite element method in L on plane polygonal domains I. Math. Comput. 34, 77–91 (1980)

    MATH  Google Scholar 

  22. Stampacchia, G.: Equations elliptiques du second ordre à coefficients discontinus. Les Presses de l’Université de Montréal, Canada, 1966

  23. Troianiello, G.: Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York, 1987

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Unterreiter.

Additional information

Mathematics Subject Classification (2000): 65N30, 65N12

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jüngel, A., Unterreiter, A. Discrete minimum and maximum principles for finite element approximations of non-monotone elliptic equations. Numer. Math. 99, 485–508 (2005). https://doi.org/10.1007/s00211-004-0554-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-004-0554-5

Keywords

Navigation