Skip to main content
Log in

Convergence of flux vector splitting schemes with single entropy inequality for hyperbolic systems of conservation laws

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

We prove the convergence of flux vector splitting schemes associated to hyperbolic systems of conservation laws with a single compatible entropy η c . We prove estimate on the L2 norm of the gradient of the numerical approximation in the inverse square root of the space increment Δx. This estimate is related to the notion of (strictly) η c -dissipativity on F+, −F and Idλ(F+F), where F+, F is the flux-decomposition. The second tool of the proof is a kinetic formulation of the flux-splitting scheme with three velocities. Then we get a control for all entropies and apply the compensated compactness theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aregba-Driollet, D., Natalini, R.: Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37(6), 1973–2004 (2000)

    Google Scholar 

  2. Berthelin, F., Bouchut, F.: Solution with finite energy to a BGK system relaxing to isentropic gas dynamics. Annales de la Faculté des Sciences de Toulouse 9, 605–630 (2000)

    Google Scholar 

  3. Berthelin, F., Bouchut, F.: Kinetic invariant domains and relaxation limit from a BGK model to isentropic gas dynamics. Asymptotic Analysis, 31(2), 153–176 (2002)

    Google Scholar 

  4. Berthelin, F., Bouchut, F.: Relaxation to isentropic gas dynamics for a BGK system with single kinetic entropy. Meth. and Appl. of Analysis 9(2), 313–327 (2002)

    Google Scholar 

  5. Bouchut, F.: Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Statist. Phys. 95(1–2), 113–170 (1999)

    Google Scholar 

  6. Bouchut, F.: Entropy satisfying flux vector splittings and kinetic BGK models. Numer. Math. 94, 623–672 (2003)

    Google Scholar 

  7. Brenier, Y.: Résolution d’équations d’évolution quasilinéaires en dimension N d’espace à l’aide d’équations linéaires en dimension N+1. J. Differential Equations 50(3), 375–390 (1983)

    Google Scholar 

  8. Brenier, Y.: Averaged multivalued solutions for scalar conservation laws. SIAM J. Numer. Anal. 21(6), 1013–1037 (1984)

    Google Scholar 

  9. Champier, S., Gallouët, T., Herbin, R.: Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh. Numer. Math. 66(2), 139–157 (1993)

    Google Scholar 

  10. Chen, G.-Q., LeFloch, P.G.: Entropy flux-splittings for hyperbolic conservation laws I, General framework. Commun. Pure Appl. Math. 48(7), 691–729 (1995)

    Google Scholar 

  11. Desvillettes, L., Mischler, S.: About the splitting algorithm for Boltzmann and B.G.K. equations. Math. Models Methods Appl. Sci. 6(8), 1079–1101 (1996)

    Google Scholar 

  12. DiPerna, R.J.: Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal. 82, 27–70 (1983)

    Google Scholar 

  13. Eymard, R., Gallouët, T., Ghilani, M., Herbin, R.: Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18(4), 563–594 (1998)

    Google Scholar 

  14. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods, Handbook of numerical analysis, Vol. VII. Handb. Numer. Anal. VII, North-Holland, Amsterdam, 2000 pp. 713–1020

  15. Godlewski, E., Raviart, P.-A.: Numerical approximation of hyperbolic systems of conservation laws. Applied Mathematical Sciences, 118, Springer-Verlag, New York, 1996

  16. Gosse, L., Tzavaras, A.E.: Convergence of relaxation schemes to the equations of elastodynamics. Math. Comp. 70(234), 555–577 (2001)

    Google Scholar 

  17. Hwang, S., Tzavaras, A.E.: Kinetic decomposition of approximate solutions to conservation laws: applications to relaxation and diffusion-dispersion approximations. Comm. Partial Differential Equations 27(5–6), 1229–1254 (2002)

    Google Scholar 

  18. Lattanzio, C., Serre, D.: Convergence of a relaxation scheme for hyperbolic systems of conservation laws. Numer. Math. 88(1), 121–134 (2001)

    Google Scholar 

  19. Serre, D.: Relaxation semi-linéaire et cinétique des systèmes de lois de conservation. Ann. Inst. H. Poincaré Anal. non linéaire 17, 169–192 (2000)

    Google Scholar 

  20. Tartar, L.: Compensated compactness and applications to partial differential equations. Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math. 39, Pitman, Boston, Mass.-London, 1979, pp. 136–212

  21. Tzavaras, A.E.: Materials with internal variables and relaxation to conservation laws. Arch. Ration. Mech. Anal. 146(2), 129–155 (1999)

    Google Scholar 

  22. Vasseur, A.: Convergence of a semi-discrete kinetic scheme for the system of isentropic gas dynamics with γ=3. Indiana Univ. Math. J. 48(1), 347–364 (1999)

    Google Scholar 

  23. Vasseur, A.: Kinetic semidiscretization of scalar conservation laws and convergence by using averaging lemmas. SIAM J. Numer. Anal. 36(2), 465–474 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Berthelin.

Additional information

Mathematics Subject Classification (2000): 65M12, 35L65, 65M06, 82C40

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthelin, F. Convergence of flux vector splitting schemes with single entropy inequality for hyperbolic systems of conservation laws. Numer. Math. 99, 585–604 (2005). https://doi.org/10.1007/s00211-004-0567-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-004-0567-0

Keywords

Navigation