Summary
This paper deals with an elliptic boundary value problem posed in the plane, with variable coefficients, but whose restriction to the exterior of a bounded domain Ω reduces to a Helmholtz equation. We consider a mixed variational formulation in a bounded domain Ω that contains the heterogeneous medium, coupled with a boundary integral method applied to the Helmholtz equation in . We utilize suitable auxiliary problems, duality arguments, and Fredholm alternative to show that the resulting formulation of the problem is well posed. Then, we define a corresponding Galerkin scheme by using rotated Raviart-Thomas subspaces and spectral elements (on the interface). We show that the discrete problem is uniquely solvable and convergent and prove optimal error estimates. Finally we illustrate our analysis with some results from computational experiments.
Similar content being viewed by others
References
Adams, R.: Sobolev Spaces. Academic Press, 1975
Bayliss, A., Gunzburger, M., Tukel, E.: Boundary conditions for the numerical solution of elliptic equations in exterior regions. SIAM J. Appl. Math. 42, 430–451 (1982)
Bérenger, J.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)
Bernardi, C.: Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26, 1212–1240 (1989)
Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin Heidelberg New York, 1991
Brink, U., Carstensen, C., Stein, E.: Symmetric coupling of boundary elements and Raviart-Thomas-type mixed finite elements in elastostatics. Numerische Mathematik 75, 153–174 (1996)
Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Second Edition. Springer-Verlag, Berlin, 1998
Coyle, J., Monk, P.: Scattering of time-harmonic electromagnetic waves by anisotropic inhomogeneous scatterers or impenetrable obstacles. SIAM J. Numer. Anal. 37, 1590–1617 (2000)
Douglas, J. Jr., Roberts, J.E.: Global estimates for mixed methods for second order elliptic equations. Math. Comput. 44, 39–52 (1985)
Falk, R., Osborn, J.: Error estimates for mixed methods. RAIRO Analyse Numérique 14, 249–277 (1980)
Gatica, G.N., Heuer, N.: A dual-dual formulation for the coupling of mixed-FEM and BEM in hyperelasticity. SIAM J. Numer. Anal. 38(2), 380–400 (2000)
Gatica, G.N., Meddahi, S.: An a-posteriori error estimate for the coupling of BEM and mixed-FEM. Numerical Functional Analysis and Optimization 20(5&6), 449–472 (1999)
Gatica, G.N., Meddahi, S.: A dual-dual mixed formulation for nonlinear exterior transmission problems. Math. Comput. 70, 1461–1480 (2001)
Gatica, G.N., Wendland, W.: Coupling of mixed finite elements and boundary elements for a hyperelastic interface problem. SIAM J. Numer. Anal. 34(6), 2335–2356 (1997)
Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier-Stokes Equations: Theory and Algorithms. Springer, Berlin Heidelberg New York, 1986
Johnson, C., Thomée, V.: Error estimates for some mixed finite element methods for parabolic type problems. RAIRO Analyse Numérique 15, 41–78 (1981)
Givoli, D.: Numerical Methods for Problems in Infinite Domains. Elsevier Science Publishers B.V. 1992, Studies in Applied Mechanics 33
Goldstein, C.: The finite element method with non-uniform mesh sizes applied to the exterior Helmholtz problem. Numerische Mathematik 38, 61–82 (1981)
Ihlenburg, F.: Finite Element Analysis of Acoustic Scattering. Springer-Verlag, New York, 1998
Kress, R.: Linear Integral Equations. Second Edition, Springer-Verlag, New York, 1999
Li, R.: On the coupling of BEM and FEM for exterior problems for the Helmholtz equation. Math. Comput. 68, 945–953 (1999)
McLean, W.: Strongly Eliptic Systems and Boundary Integral Equations. Cambridge University Press, 2000
Masmoudi, M.: Numerical solution for exterior problems. Numerische Mathematik 51, 87–101 (1987)
Meddahi, S.: An optimal iterative process for the Johnson-Nedelec method of coupling boundary and finite elements. SIAM J. Numer. Anal. 35, 1393–1415 (1998)
Meddahi, S., González, M., Pérez, P.: On a FEM–BEM formulation for an exterior quasilinear problem in the plane. SIAM J. Numer. Anal. 37, 1820–1837 (2000)
Meddahi, S., Márquez, A.: A combination of spectral and finite elements methods for an exterior problem in the plane. Appl. Numer. Math. 43, 275–295 (2002)
Meddahi, S., Márquez, A., Selgas, V.: Computing acoustic waves in an inhomogeneous medium of the plane by a coupling of spectral and finite elements. SIAM J. Numer. Anal. 41, 1729–1750 (2003)
Meddahi, S., Sayas, F.J.: A fully discrete BEM–FEM for the exterior Stokes problem in the plane. SIAM J. Numer. Anal. 37, 2082–2102 (2000)
Meddahi, S., Valdés, J., Menéndez, O., Pérez, P.: On the coupling of boundary integral and mixed finite element methods. J. Comput. Appl. Math. 69, 113–124 (1996)
Kirsch, A., Monk, P.: An analysis of the coupling of finite–element and Nyström methods in acoustic scattering. IMA J. Numer. Anal. 14, 523–544 (1994)
Nédélec, J.C.: Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems. Springer Verlag, New York, 2001
Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics Vol. 606, Springer-Verlag, Berlin, 1977
Scholz, R.: L∞-convergence of saddle–point approximations for second order problems. RAIRO Analyse Numérique 11, 209–216 (1977)
Scott, R.: Interpolated boundary conditions in the finite element method. SIAM J. Numer. Anal. 12, 404–427 (1975)
Sarannen, J., Vainikko, G.: Periodic Integral and Pseudodifferential Equations with Numerical Approximation. Springer Verlag, 2002
Zeníšek, A.: Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations. Academic Press, London, 1990
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gatica, G., Meddahi, S. On the coupling of MIXED-FEM and BEM for an exterior Helmholtz problem in the plane. Numer. Math. 100, 663–695 (2005). https://doi.org/10.1007/s00211-005-0582-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-005-0582-9