Skip to main content
Log in

On the coupling of MIXED-FEM and BEM for an exterior Helmholtz problem in the plane

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

This paper deals with an elliptic boundary value problem posed in the plane, with variable coefficients, but whose restriction to the exterior of a bounded domain Ω reduces to a Helmholtz equation. We consider a mixed variational formulation in a bounded domain Ω that contains the heterogeneous medium, coupled with a boundary integral method applied to the Helmholtz equation in . We utilize suitable auxiliary problems, duality arguments, and Fredholm alternative to show that the resulting formulation of the problem is well posed. Then, we define a corresponding Galerkin scheme by using rotated Raviart-Thomas subspaces and spectral elements (on the interface). We show that the discrete problem is uniquely solvable and convergent and prove optimal error estimates. Finally we illustrate our analysis with some results from computational experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic Press, 1975

  2. Bayliss, A., Gunzburger, M., Tukel, E.: Boundary conditions for the numerical solution of elliptic equations in exterior regions. SIAM J. Appl. Math. 42, 430–451 (1982)

    Article  Google Scholar 

  3. Bérenger, J.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  Google Scholar 

  4. Bernardi, C.: Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26, 1212–1240 (1989)

    Article  Google Scholar 

  5. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin Heidelberg New York, 1991

  6. Brink, U., Carstensen, C., Stein, E.: Symmetric coupling of boundary elements and Raviart-Thomas-type mixed finite elements in elastostatics. Numerische Mathematik 75, 153–174 (1996)

    Article  Google Scholar 

  7. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Second Edition. Springer-Verlag, Berlin, 1998

  8. Coyle, J., Monk, P.: Scattering of time-harmonic electromagnetic waves by anisotropic inhomogeneous scatterers or impenetrable obstacles. SIAM J. Numer. Anal. 37, 1590–1617 (2000)

    Article  Google Scholar 

  9. Douglas, J. Jr., Roberts, J.E.: Global estimates for mixed methods for second order elliptic equations. Math. Comput. 44, 39–52 (1985)

    Google Scholar 

  10. Falk, R., Osborn, J.: Error estimates for mixed methods. RAIRO Analyse Numérique 14, 249–277 (1980)

    Google Scholar 

  11. Gatica, G.N., Heuer, N.: A dual-dual formulation for the coupling of mixed-FEM and BEM in hyperelasticity. SIAM J. Numer. Anal. 38(2), 380–400 (2000)

    Article  Google Scholar 

  12. Gatica, G.N., Meddahi, S.: An a-posteriori error estimate for the coupling of BEM and mixed-FEM. Numerical Functional Analysis and Optimization 20(5&6), 449–472 (1999)

    Google Scholar 

  13. Gatica, G.N., Meddahi, S.: A dual-dual mixed formulation for nonlinear exterior transmission problems. Math. Comput. 70, 1461–1480 (2001)

    Article  Google Scholar 

  14. Gatica, G.N., Wendland, W.: Coupling of mixed finite elements and boundary elements for a hyperelastic interface problem. SIAM J. Numer. Anal. 34(6), 2335–2356 (1997)

    Article  Google Scholar 

  15. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier-Stokes Equations: Theory and Algorithms. Springer, Berlin Heidelberg New York, 1986

  16. Johnson, C., Thomée, V.: Error estimates for some mixed finite element methods for parabolic type problems. RAIRO Analyse Numérique 15, 41–78 (1981)

    Google Scholar 

  17. Givoli, D.: Numerical Methods for Problems in Infinite Domains. Elsevier Science Publishers B.V. 1992, Studies in Applied Mechanics 33

  18. Goldstein, C.: The finite element method with non-uniform mesh sizes applied to the exterior Helmholtz problem. Numerische Mathematik 38, 61–82 (1981)

    Article  Google Scholar 

  19. Ihlenburg, F.: Finite Element Analysis of Acoustic Scattering. Springer-Verlag, New York, 1998

  20. Kress, R.: Linear Integral Equations. Second Edition, Springer-Verlag, New York, 1999

  21. Li, R.: On the coupling of BEM and FEM for exterior problems for the Helmholtz equation. Math. Comput. 68, 945–953 (1999)

    Article  Google Scholar 

  22. McLean, W.: Strongly Eliptic Systems and Boundary Integral Equations. Cambridge University Press, 2000

  23. Masmoudi, M.: Numerical solution for exterior problems. Numerische Mathematik 51, 87–101 (1987)

    Article  Google Scholar 

  24. Meddahi, S.: An optimal iterative process for the Johnson-Nedelec method of coupling boundary and finite elements. SIAM J. Numer. Anal. 35, 1393–1415 (1998)

    Article  Google Scholar 

  25. Meddahi, S., González, M., Pérez, P.: On a FEM–BEM formulation for an exterior quasilinear problem in the plane. SIAM J. Numer. Anal. 37, 1820–1837 (2000)

    Article  Google Scholar 

  26. Meddahi, S., Márquez, A.: A combination of spectral and finite elements methods for an exterior problem in the plane. Appl. Numer. Math. 43, 275–295 (2002)

    Article  Google Scholar 

  27. Meddahi, S., Márquez, A., Selgas, V.: Computing acoustic waves in an inhomogeneous medium of the plane by a coupling of spectral and finite elements. SIAM J. Numer. Anal. 41, 1729–1750 (2003)

    Article  Google Scholar 

  28. Meddahi, S., Sayas, F.J.: A fully discrete BEM–FEM for the exterior Stokes problem in the plane. SIAM J. Numer. Anal. 37, 2082–2102 (2000)

    Article  Google Scholar 

  29. Meddahi, S., Valdés, J., Menéndez, O., Pérez, P.: On the coupling of boundary integral and mixed finite element methods. J. Comput. Appl. Math. 69, 113–124 (1996)

    Article  Google Scholar 

  30. Kirsch, A., Monk, P.: An analysis of the coupling of finite–element and Nyström methods in acoustic scattering. IMA J. Numer. Anal. 14, 523–544 (1994)

    Google Scholar 

  31. Nédélec, J.C.: Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems. Springer Verlag, New York, 2001

  32. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics Vol. 606, Springer-Verlag, Berlin, 1977

  33. Scholz, R.: L-convergence of saddle–point approximations for second order problems. RAIRO Analyse Numérique 11, 209–216 (1977)

    Google Scholar 

  34. Scott, R.: Interpolated boundary conditions in the finite element method. SIAM J. Numer. Anal. 12, 404–427 (1975)

    Article  Google Scholar 

  35. Sarannen, J., Vainikko, G.: Periodic Integral and Pseudodifferential Equations with Numerical Approximation. Springer Verlag, 2002

  36. Zeníšek, A.: Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations. Academic Press, London, 1990

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel N. Gatica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatica, G., Meddahi, S. On the coupling of MIXED-FEM and BEM for an exterior Helmholtz problem in the plane. Numer. Math. 100, 663–695 (2005). https://doi.org/10.1007/s00211-005-0582-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0582-9

Mathematics Subject Classification (1991)