Skip to main content
Log in

On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

This paper studies a numerical method for second-order oscillatory differential equations in which high-frequency oscillations are generated by a linear time- and/or solution-dependent part. For constant linear part, it is known that the method allows second-order error bounds independent of the product of the step-size with the frequencies and is therefore a long-time-step method. Most real-world problems are not of that kind and it is important to study more general equations. The analysis in this paper shows that one obtains second-order error bounds even in the case of a time- and/or solution-dependent linear part if the matrix is evaluated at averaged positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ascher, U.M., Reich, S.: On some difficulties in integrating highly oscillatory Hamiltonian systems. In: Proc. Computational Molecular Dynamics, Springer Lecture Notes, 1999, pp. 281–296

  2. Cohen, D., Hairer, E., Lubich, Ch.: Modulated fourier expansions of highly oscillatory differential equations. Foundations of Comput. Maths. 3, 327–450 (2003)

    Article  Google Scholar 

  3. García-Archilla, B., Sanz-Serna, J., Skeel, R.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 30(3), 930–963 (1998)

    Google Scholar 

  4. Grimm, V.: Exponentielle Integratoren als Lange-Zeitschritt-Verfahren für oszillatorische Differentialgleichungen zweiter Ordnung, PhD thesis, Mathematisches Institut, Universität Düsseldorf, Germany, 2002

  5. Grubmüller, H.: Dynamiksimulation sehr großer Makromoleküle auf einem Parallelrechner, PhD thesis, Physik-Dept. der Tech. Univ. München, 1994

  6. Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)

    Article  Google Scholar 

  7. Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration. Springer-Verlag, 2002

  8. Hochbruck, M., Lubich, Ch.: A Bunch of Time Integrators for Quantum/Classical Molecular Dynamics. In: P. Deuflhard, J. Hermans, B. Leimkuhler, A.E. Mark, S. Reich, R.D. Skeel (eds.), Computational Molecular Dynamics: Challenges, Methods, Ideas, volume 4 of Lecture Notes in Computational Science and Engineering, Springer-Verlag, Berlin, 1997, pp. 421–432

  9. Hochbruck, M., Lubich, Ch.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34, 1911–1925 (1997)

    Article  Google Scholar 

  10. Hochbruck, M., Lubich, Ch.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)

    Article  Google Scholar 

  11. Hochbruck, M., Lubich, Ch., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comp. 19, 1552–1574 (1998)

    Article  Google Scholar 

  12. Iserles, A.: Think globally, act locally: solving highly-oscillatory ordinary differential equations. Appld. Num. Anal. 43, 145–160 (2002)

    Google Scholar 

  13. Izaguirre, J.A., Reich, S., Skeel, R.D.: Longer time steps for molecular dynamics. J. Chemical Phys. 110(20), 9853–9864 (1999)

    Article  Google Scholar 

  14. Petzold, L., Jay, L., Yen, J.: Numerical Solution of Highly Oscillatory Ordinary Differential Equations. Acta Numerica 6, 437–484 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Grimm.

Additional information

Mathematics Subject Classification (2000): 65L05, 65L70

Acknowledgement I am grateful to Marlis Hochbruck and Christian Lubich for helpful discussions on the subject.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimm, V. On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations. Numer. Math. 100, 71–89 (2005). https://doi.org/10.1007/s00211-005-0583-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0583-8

Keywords

Navigation