Summary
This work is devoted to non-linear eddy current problems and their numerical treatment by the so-called multiharmonic approach. Since the sources are usually alternating currents, we propose a truncated Fourier series expansion instead of a costly time-stepping scheme. Moreover, we suggest to introduce some regularization parameter that ensures unique solvability not only in the factor space of divergence-free functions, but also in the whole space H(curl). Finally, we provide a rigorous estimate for the total error that is due to the use of truncated Fourier series, the regularization technique and the spatial finite element discretization.
Similar content being viewed by others
References
Amrouche, C., Bernardi, C., Dauge, M.: Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci. 21, 823–864 (1998)
Babuska, I.: Error bounds for the finite element method. Numer. Math. 16, 322–333 (1971)
Bachinger, F.: Multigrid solvers for 3D multiharmonic nonlinear magnetic field computations. Diploma thesis, Institute for Computational Mathematics, Johannes Kepler University Linz, 2003
Bachinger, F., Kaltenbacher, M., Reitzinger, S.: An efficient solution strategy for the HBFE method. Proceedings of the IGTE ‘02 Symposium Graz, Austria, 2002, pp. 385–389
Bachinger, F., Langer, U., Schöberl, J.: Efficient solvers for nonlinear time-periodic eddy current problems. SFB-Report No. 2004-16, Johannes Kepler Universiy Linz, SFB “Numerical and Symbolic Scientific Computing”, 2004
Bachinger, F., Langer, U., Schöberl, J.: Numerical analysis of nonlinear multiharmonic eddy current problems. SFB-Report No. 2004-01, Johannes Kepler Universiy Linz, SFB “Numerical and Symbolic Scientific Computing”, 2004
Braess, D.: Finite Elements: Theory, fast solvers and applications in solid mechanics. 2nd ed., Cambridge University Press, Cambridge, 2001
Buffa, A., Costabel, M., Sheen, D.: On traces for H(curl,Ω) in Lipschitz domains. J. Math. Anal. Appl. 276/2, 845–876 (2002)
Costabel, M., Dauge, M., Nicaise, S.: Singularities of Maxwell interface problems. RAIRO Modél. Math. Anal. Numér. 33, 627–649 (1999)
Costabel, M., Dauge, M., Nicaise, S.: Singularities of eddy current problems. Preprint NI03019, Newton Institute Cambridge, 2003
Costabel, M., Dauge, M., Nicaise, S.: Corner singularities of Maxwell interface and eddy current problems. Operator Theoretical Methods and Applications to Mathematical Physics – The Erhard Meister Memorial Volume (Gohberg, I., dos Santos, A. F., Speck, F.-O., Teixeira, F.S., Wendland, W. eds.), Operator Theory: Advances and Applications, Birkhäuser, 2003
Engl, H. W., Lindner, E.: A combined boundary value and transmission problem arising from the calculation of eddy currents: well-posedness and numerical treatment. Journ. Appl. Math. Phys. 35, 289–307 (1984)
Evans, L. C.: Partial Differential Equations. Graduate studies in mathematics, vol. 19, American Mathematical Society, Providence, Rhode Island, 1998
de Gersem, H., Sande, H. V., Hameyer, K.: Strong coupled multiharmonic finite element simulation package. COMPEL 20, 535–546 (2001)
Gyselinck, J., Dular, P., Geuzaine, C., Legros, W.: Harmonic-balance finite-element modeling of electromagnetic devices: A Novel Approach. IEEE Transactions on Magnetics 38, 521–524 (2002)
Ida, N., Bastos, P. A.: Electromagnetics and calculation of fields. Springer, New York, 1997
Jack, A., Mecrow, B.: Methods for magnetically nonlinear problems involving significant hysteresis and eddy currents. IEEE Transactions on Magnetics 26, 424–429 (1990)
Paoli, G., Bíro, O., Buchgraber, G.: Complex representation in nonlinear time harmonic eddy current problems. IEEE Transactions on Magnetics 34, 2625–2628 (1998)
Pechstein, C.: Multigrid-Newton-Methods for nonlinear magnetostatic problems. Diploma thesis, Institute for Computational Mathematics, Johannes Kepler University Linz, 2004
Reitzinger, S., Kaltenbacher, B., Kaltenbacher, M.: A note on the approximation of B-H curves for nonlinear magnetic field computations. SFB-Report No. 02-30, Johannes Kepler Universiy Linz, SFB “Numerical and Symbolic Scientific Computing”, 2002
Roberts, J. E., Thomas, J.-M.: Mixed and Hybrid Methods. Handbook of Numerical Analysis II: Finite Element Methods (Part 1) (P. G. Ciarlet and J. L. Lions, eds.), North-Holland, Amsterdam, 1991
Schöberl, J.: Commuting quasi-interpolation operators for mixed finite elements. Technical Report ISC-01-10-MATH, Texas A&M University, 2001
Strang, G.: Variational crimes in the finite element method. The mathematical foundations of the finite element method with applications to partial differential equations (A. K. Aziz, ed.), Academic Press, New York, 1972
Vandevelde, L., Gyselinck, J., Melkebeek, J.: Steady-state finite element analysis in the frequeny domain of squirrel-cage induction motors. Proceedings of the SPEEDAM ‘94 Symposium, Taormina, Italy, 1994, pp. 29–34
Yamada, S., Bessho, K.: Harmonic field calculation by the combination of finite element analysis and harmonic balance method. IEEE Transactions on Magnetics 24, 2588–2590 (1988)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work has been supported by the Austrian Science Fund “Fonds zur Förderung der wissenschaftlichen Forschung (FWF)” under the grants SFB F013, P 14953 and START Y192.
Rights and permissions
About this article
Cite this article
Bachinger, F., Langer, U. & Schöberl, J. Numerical analysis of nonlinear multiharmonic eddy current problems. Numer. Math. 100, 593–616 (2005). https://doi.org/10.1007/s00211-005-0597-2
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-005-0597-2