Skip to main content
Log in

Interior penalty discontinuous approximations of convection–diffusion problems with parabolic layers

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

A nonsymmetric discontinuous Galerkin finite element method with interior penalties is considered for two–dimensional convection–diffusion problems with regular and parabolic layers. On an anisotropic Shishkin–type mesh with bilinear elements we prove error estimates (uniformly in the perturbation parameter) in an integral norm associated with this method. On different types of interelement edges we derive the values of discontinuity–penalization parameters. Numerical experiments complement the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dobrowolski, M., Roos, H.–G.: A priori estimates for the solution of convection–diffusion problems and interpolation on Shishkin meshes. J. Anal. Appl. 16, 1001–1012 (1997)

    Google Scholar 

  2. Georgoulis, E.H., Süli, E.: hp–DGFEM on shape–irregular meshes: Reaction–diffusion problems. Research Report 01/09, Oxford University Computing Laboratory, 2001

  3. Gopalakrishnan, J., Kanschat, G.: A Multilevel Discontinouus Galerkin Method. Numer. Math. 95, 527–550 (2003)

    Article  Google Scholar 

  4. Houston, P., Schwab, C., Süli, E.: Discontinuous hp–Finite Element Methods for Advection–Diffusion–Reaction Problems. SIAM J. Numer. Anal. 39, 2133–2163 (2002)

    Article  Google Scholar 

  5. Houston, P., Schwab, C., Süli, E.: Discontinuous hp–finite element methods for advection–diffusion problems. Technical Report NA–00/15, Oxford University Computing Laboratory, Oxford, UK, 2000

  6. Kopteva, N.V.: How accurate is the streamline–diffusion FEM inside parabolic layers? Lecture presented at the 19th Biennial Dundee Conference on Numerical Analysis, 2001

  7. Linß, T.: Anisotropic meshes and streamline–diffusion stabilization for convection–diffusion problem. Preprint MATH-NM-11-2002, Institut für Numerische Mathematik, Technische Universität Dresden, 2002

  8. Linß, T.: Layer–adapted meshes for convection–diffusion problems. Comp. Meth. Appl. Mech. Eng. 192, 1061–1105 (2003)

    Article  Google Scholar 

  9. Oden, J.T., Babuška, I., Baumann, C.E.: A discontinuous hp finite element method for diffusion problems. J. Comp. Phys. 146, 491–519 (1998)

    Article  CAS  Google Scholar 

  10. Prudhomme, S., Pascal, F., Oden, J.T., Romkes, A.: Review of a priori error estimation for discontinuous Galerkin methods. TICAM Report 00–27, Texas Institute for Computational and Applied Mathematics, The University of Texas at Austin, 2000

  11. Riviére, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39, 902–931 (2001)

    Article  Google Scholar 

  12. Roos, H.–G.: Optimal convergence of basic schemes for elliptic boundary value problems with strong parabolic layers. J. Math. Anal. Appl. 267, 194–208 (2002)

    Article  Google Scholar 

  13. Roos, H.–G., Skalický, T.: A comparison of the finite element method on Shishkin and Gartland–type meshes for convection–diffusion problems. CWI Quarterly 10, 277–300 (1997)

    Google Scholar 

  14. Roos, H.–G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Volume 24 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1996

  15. Roos, H.–G., Zarin, H.: The discontinuous Galerkin finite element method for singularly perturbed problems (Proc. of the Conference CISC 2002, Berlin, October 2–5, 2002, Lecture Notes in Computational Science and Engineering, Volume 35, Springer Verlag), pp. 246–267

  16. Shishkin, G.I.: Discrete Approximation of Singularly Perturbed elliptic and Parabolic Equations. Russian Academy of Sciences, Ural Section, Ekaterinburg, 1992

  17. Zarin, H.: Finite element methods for singularly perturbed problems with special emphasis on discontinuities. Doctoral Dissertation, Department of Mathematics and Informatics, University of Novi Sad, Serbia and Montenegro, 2003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Zarin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarin, H., Roos, H. Interior penalty discontinuous approximations of convection–diffusion problems with parabolic layers. Numer. Math. 100, 735–759 (2005). https://doi.org/10.1007/s00211-005-0598-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0598-1

Mathematics Subject Classification (1991)