Skip to main content
Log in

Discontinuous Least-Squares finite element method for the Div-Curl problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we consider the div-curl problem posed on nonconvex polyhedral domains. We propose a least-squares method based on discontinuous elements with normal and tangential continuity across interior faces, as well as boundary conditions, weakly enforced through a properly designed least-squares functional. Discontinuous elements make it possible to take advantage of regularity of given data (divergence and curl of the solution) and obtain convergence also on nonconvex domains. In general, this is not possible in the least-squares method with standard continuous elements. We show that our method is stable, derive a priori error estimates, and present numerical examples illustrating the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)

    Article  Google Scholar 

  2. Apel, T., Nicaise, S., Schöberl, J.: Crouzeix-Raviart type finite elements on anisotropic meshes. Numer. Math., 89(2), 193–223 (2001)

    Google Scholar 

  3. Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39(5), 1749–1779 (electronic), 2001/2002

    Google Scholar 

  4. Bergström, R.: Least-Squares Finite Element Method with Applications in Electromagnetics. Preprint 10, Chalmers Finite Element Center, Chalmers University of Technology. To appear in Math. Models Methods Appl. Sci. 2002

  5. Bergström, R., Bondeson, A., Johnson, C., Larson, M.G., Liu, Y., Samuelsson, K.: Adaptive Finite Element Methods in Electromagnetics. Swedish Institute of Applied Mathematics (ITM) 2 (1999)

  6. Bergström, R., Larson, M.G.: Discontinuous/Continuous Least-Squares Finite Element Methods for Elliptic Problems. Preprint 11, Chalmers Finite Element Center, Chalmers University of Technology. To appear in Math. Models Methods Appl. Sci. 2002

  7. Bergström, R., Larson, M.G., Samuelsson, K.: The Finite Element Method and Multigrid for the Magnetostatic Problem. Chalmers Finite Element Center Chalmers University of Technology Preprint 2 2001

  8. Bochev, P.B., Gunzburger, M.D.: Finite Element Methods of Least-Squares Type. SIAM Rev. 40(4), 789–837 (1998)

    Article  Google Scholar 

  9. Bonnet-Ben Dhia, A.-S., Hazard, C., Lohrengel, S.: A singular field method for the solution of Maxwell's equations in polyhedral domains. SIAM J. Appl. Math. 59(6), 2028–2044 (1999)

    Article  Google Scholar 

  10. Bramble, J. H., Pasciak, J. E.: A new approximation technique for div-curl systems. Math. Comp., 73(248), 1739–1762 (electronic), 2004

    Google Scholar 

  11. Bramble, J.H., Lazarov, R.D., Pasciak, J.E.: A least-squares approach based on a discrete minus one inner product for first order systems. Math. Comp. 66(219), 935–955 (1997)

    Article  Google Scholar 

  12. Cai, Z., Manteuffel T.A., McCormick, S.F.: First-order system least squares for second-order partial differential equations. II. SIAM J. Numer. Anal. 34(2), 425–454 (1997)

    Article  Google Scholar 

  13. Cao, Y., Gunzberger, M.D.: Least-Squares Finite Element Approximations to Solutions of Interface Problems. SIAM J. Numer. Anal. 35(1), 393–405 (1998)

    Article  Google Scholar 

  14. Carey, G.F., Pehlivanov, A.I.: Local error estimation and adaptive remeshing scheme for least-squares mixed finite elements. Comput. Methods Appl. Mech. Engrg. 150, 125–131 (1997)

    Article  Google Scholar 

  15. Chen, Z.M., Du, Q., Zou, J.: Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37, 1542–1570 (2000)

    Article  Google Scholar 

  16. Costabel, M.: A coercive bilinear form for Maxwell's equations. J. Math. Anal. Appl. 157(2), 527–541 (1991)

    Article  Google Scholar 

  17. Costabel, M., Dauge, M.: Maxwell and Lamé eigenvalues on polyhedra. Math. Methods Appl. Sci. 22(3), 243–258 (1999)

    Article  Google Scholar 

  18. Costabel, M., Dauge, M.: Weigthed Regularization of Maxwell Equations in Polyhedral Domains. Technical Report 01-26, IRMAR, Universitè de Rennes, France, 2001. To appear in Numer. Math.

  19. Cox, C. L., Fix, G. J.: On the accuracy of least squares methods in the presence of corner singularities. Comput. Math. Appl. 10(6), 463–475 (1985), (1984)

    Article  Google Scholar 

  20. Formaggia, L., Perotto, S.: New anisotropic a priori estimates. Numer. Math. 89, 641–667 (2001)

    Google Scholar 

  21. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, 1986

  22. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman Publishing Inc., 1985

  23. Hansbo, P., Larson, M. G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method. Comput. Methods Appl. Mech. Engrg. 191(17–18), 1895–1908 (2002)

    Google Scholar 

  24. Jackson, J.D.: Classical Electrodynamics. John Wiley & Sons, 2nd edition, 1975

  25. Manteuffel, T.A., McCormick, S.F., Starke, G.: First-order system of least-squares for second order elliptic problems with discontinuous coefficients. In: Proc. 7th Copper Mountain Conferrence on Multigrid Methods, NASA Conference Pub.No. 3339, 551 (1995)

  26. Pasciak J. E., Zhao J.: Overlapping Schwarz methods in H(curl) on polyhedral domains. J. Numer. Math. 10(3), 221–234 (2002)

    Google Scholar 

  27. Pehlivanov, A.I., Carey, G.F., Vassilevski, P.S.: Least-squares mixed finite element methods for non-selfadjoint problems: I. Error estimates. Numer. Math. 72, 501–522 (1996)

    Google Scholar 

  28. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54, 483–493 (1990)

    Google Scholar 

  29. Siebert, K.G.: An a posteriori error estimator for anisotropic refinement. Numer. Math. 73(3), 373–398 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats G. Larson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bensow, R., Larson, M. Discontinuous Least-Squares finite element method for the Div-Curl problem. Numer. Math. 101, 601–617 (2005). https://doi.org/10.1007/s00211-005-0600-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0600-y

Mathematics Subject Classification (2000)

Navigation