Abstract
We study approximation errors for the h-version of Nédélec edge elements on anisotropically refined meshes in polyhedra. Both tetrahedral and hexahedral elements are considered, and the emphasis is on obtaining optimal convergence rates in the H(curl) norm for higher order elements. Two types of estimates are presented: First, interpolation error estimates for functions in anisotropic weighted Sobolev spaces. Here we consider not only the H(curl)-conforming Nédélec elements, but also the H(div)-conforming Raviart-Thomas elements which appear naturally in the discrete version of the de Rham complex. Our technique is to transport error estimates from the reference element to the physical element via highly anisotropic coordinate transformations. Second, Galerkin error estimates for the standard H(curl) approximation of time harmonic Maxwell equations. Here we use the anisotropic weighted Sobolev regularity of the solution on domains with three-dimensional edges and corners. We also prove the discrete compactness property needed for the convergence of the Maxwell eigenvalue problem. Our results generalize those of [40] to the case of polyhedral corners and higher order elements.
Similar content being viewed by others
References
Acosta, G., Durán, R.G.: The maximum angle condition for mixed and nonconforming elements: application to the Stokes equations. SIAM J. Numer. Anal. 37, 18–36 (1999) (electronic)
Al-Shenk, N.: Uniform error estimates for certain narrow Lagrange finite elements. Math. Comp. 63, 105–119 (1994)
Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Meth. Appl. Sci. 21, 823–864 (1998)
Apel, T.: Anisotropic finite elements: Local estimates and applications. Advances in Numerical Mathematics, Teubner, Stuttgart, 1999
Apel, T.: Personal communication. July 2003
Apel, T., Dobrowolski, M.: Anisotropic interpolation with applications to the finite element method. Computing 47, 277–293 (1992)
Apel, T., Nicaise, S.: The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Meth. Appl. Sci. 21, 519–549 (1998)
Babuška, I., Kellogg, R.B., Pitkäranta, J.: Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 33, 447–471 (1979)
Birman, M., Solomyak, M.: L2-theory of the Maxwell operator in arbitrary domains. Russ. Math. Surv. 42(6), 75–96 (1987)
Boffi, D.: Fortin operator and discrete compactness for edge elements. Numer. Math. 87, 229–246 (2000)
Boffi, D.: A note on the de Rham complex and a discrete compactness property. Appl. Math. Lett. 14, 33–38 (2001)
Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Vol. 15, Springer-Verlag, Berlin, 1991
Buffa, A.: Remarks on the discretization of some non-positive operator with application to heterogeneous Maxwell problems. SIAM J. Num. Anal. 43(1), 1–18 (2005)
Buffa, A., Costabel, M., Dauge, M.: Anisotropic regularity results for Laplace and Maxwell operators in a polyhedron. C. R. Math. Acad. Sci. Paris 336(7), 565–570 (2003)
Buffa, A., Hiptmair, R., von Petersdorff, T., Schwab, C.: Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numer. Mathem. 95(3), 459–485 (2003)
Caorsi, S., Fernandes, P., Raffetto, M.: On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38, 580–607 (2000) (electronic)
Caorsi, S., Fernandes, P., Raffetto, M.: Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements. M2AN Math. Model. Numer. Anal. 35, 331–354 (2001)
Cessenat, M.: Mathematical methods in Electromagnetism. Linear Theory and Applications, vol. 41 of Series of advances in mathematics for applied sciences, Word Scientific publishing, 1996
Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978
Ciarlet, P., Jr, Zou, J.: Fully discrete finite element approaches for time-dependant Maxwell’s equations. Numer. Math. 82, 193–219 (1999)
Costabel, M., Dauge, M.: Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal. 151, 221–276 (2000)
Costabel, M., Dauge, M.: Weighted regularization of Maxwell equations in polyhdreal domains. Numer. Mathem. 93, 239–277 (2002)
Costabel, M., Dauge, M.: Computation of resonance frequencies for Maxwell equations in non smooth domains. In: M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne (eds.), Topics in Computational Wave Propagation, Lecture Notes in Computational Science and Engineering., Vol. 31, Springer, 2003, pp. 125–161
Costabel, M., Dauge, M., Nicaise, S.: Singularities of Maxwell interface problems. M2AN Math. Model. Numer. Anal. 33, 627–649 (1999)
Costabel, M., Dauge, M., Schwab, C.: Exponential convergence of the hp-FEM for the weighted regularization of Maxwell equations in polygonal domains. To appear in Math. Models Methods Appl. Sci. 15(4), 2005
Dauge, M.: Elliptic boundary value problems on corner domains. Lecture Notes in Mathematics, Springer Verlag, Berlin, 1988
Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation. I. The problem of convergence. RAIRO Anal. Numér. 12, 97–112, iii (1978)
Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation. II. Error estimates for the Galerkin method. RAIRO Anal. Numér. 12, 113–119, iii (1978)
Durán, R.G.: Error estimates for 3-d narrow finite elements. Math. Comp. 68, 187–199 (1999)
Farhloul, M., Nicaise, S., Paquet, L.: Some mixed finite element methods on anisotropic meshes. M2AN Math. Model. Numer. Anal. 35, 907–920 (2001)
Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations. Sringer-Verlag, Berlin, 1986
Guo, B.Q.: The h-p version of the finite element method for solving boundary value problems in polyhedral domains. In: M. Costabel, M. Dauge, S. Nicaise (eds.), Boundary value problems and integral equations in nonsmooth domains (Luminy, 1993), Dekker, New York, 1995, pp. 101–120
Hiptmair, R.: Canonical construction of finite elements. Math. Comp. 68, 1325–1346 (1999)
Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numerica, 2002, pp. 237–339
Kikuchi, F.: On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36, 479–490 (1989)
Krízek, M.: On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29, 513–520 (1992)
Leis, R.: Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Medien. Math. Z. 106, 213–224 (1968)
Monk, P.: Analysis of a finite element method for Maxwell’s equations. SIAM J. Numer. Anal. 29, 714–729 (1992)
Nédélec, J.: Mixed finite element in ℝ3. Numer. Math. 35, 315–341 (1980)
Nicaise, S.: Edge elements on anisotropic meshes and approximation of the Maxwell equations. SIAM J. Numer. Anal. 39, 784–816 (2001) (electronic)
Raviart, P.A., Thomas, J.M.: Primal hybrid finite element methods for second order elliptic problems. Math. Comput. 31, 391–413 (1977)
Raviart, P.A., Thomas, J.M.: A Mixed Finite Element Method for Second Order Elliptic Problems, vol. 606 of Springer Lecture Notes in Mathematics, Springer, New York, 1977, pp. 292–315
Schwab, C.: p- and hp-finite element methods. Theory and applications in solid and fluid mechanics. The Clarendon Press Oxford University Press, New York, 1998
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Buffa, A., Costabel, M. & Dauge, M. Algebraic convergence for anisotropic edge elements in polyhedral domains. Numer. Math. 101, 29–65 (2005). https://doi.org/10.1007/s00211-005-0607-4
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-005-0607-4