Abstract
This paper presents an a posteriori error analysis for the linear finite element approximation of the Signorini problem in two space dimensions. A posteriori estimations of residual type are defined and upper and lower bounds of the discretization error are obtained. We perform several numerical experiments in order to compare the convergence of the terms in the error estimator with the discretization error.
Similar content being viewed by others
References
Ainsworth, M., Oden, J.T., Lee, C.: Local a posteriori error estimators for variational inequalities. Numer. Meth. PDE 9, 23–33 (1993)
Ben Belgacem, F.: Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element method. SIAM J. Numer. Anal. 37, 1198–1216 (2000)
Chen, Z., Nochetto, R.H.: Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84, 527–548 (2000)
Chikouche, W., Mercier, D., Nicaise, S.: Regularity of the solution of some unilateral boundary value problems in polygonal and polyhedral domains. Commun. PDE 29, 43–70 (2004)
Ciarlet, P.G.: The finite element method for elliptic problems (North-Holland, Amsterdam, 1978)
Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 2, 77–84 (1975)
Fierro, F., Veeser, A.: A posteriori error estimators for regularized total variation of characteristic functions. SIAM J. Numer. Anal. 41, 2032–2055 (2003)
Grisvard, P.: Elliptic problems in nonsmooth domains, Vol. 24 of Monographs and Studies in Mathematics. (Pitman, Boston-London-Melbourne, 1985)
Hoppe, R.H.W., Kornhuber, R.: Adaptive multilevel methods for obstacle problems. SIAM J. Numer. Anal. 31, 301–323 (1994)
Johnson, C. : Adaptive finite element methods for the obstacle problem. Math. Models Methods Appl. Sci. 2, 483–487 (1992)
Mercier, D., Nicaise, S.: Regularity of the solution of some unilateral boundary value problems in polygonal domains. Math. Nachrichten, 2004
Nochetto, R.H., Siebert, K., Veeser, A.: Pointwise a posteriori error control for elliptic obstacle problems. Numer Math. 95, 163–195 (2003)
Nochetto, R.H., Siebert, K., Veeser, A.: Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J. Numer. Anal. (to appear)
Scott, L.R., Zhang, S.: Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54, 483–493 (1990)
Veeser, A.: Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39, 146–167 (2001)
Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley and Teubner, Chichester and Stuttgart, 1996
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hild, P., Nicaise, S. A posteriori error estimations of residual type for Signorini's problem. Numer. Math. 101, 523–549 (2005). https://doi.org/10.1007/s00211-005-0630-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-005-0630-5