Abstract
We consider the error introduced using QR methods to approximate Lyapunov exponents. We give a backward error statement for linear non-autonomous systems, and further discuss nonlinear autonomous problems. In particular, for linear systems we show that one approximates a ``nearby'' discontinuous problem where how nearby is measured in terms of local errors and a measure of non-normality. For nonlinear problems we use a type of shadowing result.
Similar content being viewed by others
References
Adrianova, L.Y.: Introduction to Linear Systems of Differential Equations. Translations of Mathematical Monographs Vol. 146, AMS, Providence, R.I. 1995
Arnold, L., Wihstutz, V.: Lyapunov Exponents. Proceedings, Bremen 1984. Springer-Verlag, Berlin, Lecture Notes in Mathematics 1186, 1986
Arnold, L., Crauel, H., Eckmann J.P.: Lyapunov Exponents. Proceedings, Oberwolfach 1990. Springer-Verlag, Berlin, Lecture Notes in Mathematics 1486, 1991
Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: ``Lyapunov Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; A Method for Computing All of Them. Part 1: Theory '', and `` . . . Part 2: Numerical Applications ''. Meccanica 15, 9–20, 21–30 (1980)
Bylov, B.F., Izobov, N.A.: ``Necessary and sufficient conditions for stability of characteristic exponents of a linear system.'' Differentsial'nye Uravneniya 5, 1794–1903 (1969)
Constantin, P., Foias, C.: ``Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations.'' Commun. Pure Appl. Mathem. 38, 1–27 (1985)
Dieci, L., Morini, B., Papini, A., Pasquali, A.: ``On real logarithms of nearby matrices and structured matrix interpolation''. Appl. Numer. Mathem. 19, 145–165 (1999)
Dieci, L., Russell, R.D., Van Vleck, E.S.: ``On the computation of Lyapunov exponents for continuous dynamical systems''. SIAM J. Numer. Anal. 34, 402–423 (1997)
Dieci, L., Van Vleck, E.S.: ``Lyapunov and other spectra: a survey.'' In: Estep, D., Tavener, S. (Eds.), Preservation of Stability under Discretization SIAM Publications 2002
Dieci, L., Van Vleck, E.S.: ``Lyapunov spectral intervals: theory and computation.'' SIAM J. Numer. Anal. 40 516–542 (2003)
Dieci, L., Van Vleck, E.S.: ``Lyapunov and Sacker-Sell spectral intervals.'' (2003), submitted
Dieci, L., Van Vleck, E.S.: ``LESLIS and LESLIL: Codes for approximating Lyapunov exponents of linear systems''. Technical Report (2004): http://www.math.gatech.edu/~dieci.
Hairer, E., Lubich, C.: ``The life-span of backward error analysis for numerical integrators.'' Numer. Math. 76, 441–462 (1997)
McDonald, E., Higham, D.: ``Error analysis of QR algorithms for computing Lyapunov exponents''. ETNA 12, 234–251 (2001)
Millionshchikov, V.M.: ``Systems with integral division are everywhere dense in the set of all linear systems of differential equations.'' Differentsial'nye Uravneniya 5, 1167–1170 (1969)
Oliveira, S., Stewart, D.E.: ``Exponential splitting of products of matrices and accurately computing singular values of long products''. LAA 309, 175–190 (2000)
Oseledec, V.I.: ``A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems''. Trans. Moscow Mathem. Society 19, 197 (1968)
Palmer, K.J.: ``The structurally stable systems on the half-line are those with exponential dichotomy.'' J. Diff. Eqn. 33, 16–25 (1979)
Palmer, K.J.: Shadowing in Dynamical Systems, Mathematics and Its Applications, Vol. 501, Kluwer, 2000
Ruelle, D.: Chaotic evolution and strange attractors. Cambridge University Press, Cambridge, 1989
Stewart, D.E.: ``A new algorithm for the SVD of a long product of matrices and the stability of products''. ETNA, 5, 29–47 (1997)
Trefethen, L.N., Bau, D.: Numerical Linear algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported in part under NSF Grants DMS/FRG-0139895 and DMS/FRG-0139824
Rights and permissions
About this article
Cite this article
Dieci, L., Vleck, E. On the error in computing Lyapunov exponents by QR Methods. Numer. Math. 101, 619–642 (2005). https://doi.org/10.1007/s00211-005-0644-z
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-005-0644-z