Abstract
Reliable and efficient residual-based a posteriori error estimates are established for the stabilised locking-free finite element methods for the Reissner-Mindlin plate model. The error is estimated by a computable error estimator from above and below up to multiplicative constants that do neither depend on the mesh-size nor on the plate's thickness and are uniform for a wide range of stabilisation parameter. The error is controlled in norms that are known to converge to zero in a quasi-optimal way. An adaptive algorithm is suggested and run for improving the convergence rates in three numerical examples for thicknesses 0.1, .001 and .001.
Similar content being viewed by others
References
Arnold, D.N., Brezzi, F.: Some new elements for the Reissner-Mindlin plate model. In: J.L. Lions, C. Baiocchi (eds.) Boundary value problems for partial differential equations and applications. Masson, 1993, pp. 287–292.
Arnold, D.N., Falk, R.S.: A uniformly accurate finite element method for the Reissner-Mindlin plate model. SIAM J. Numer. Anal. 26, 1276–1290 (1989)
Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)
Bathe, K.J., Brezzi, F., Fortin, M.: Mixed-interpolated elements for Reissner-Mindlin plates. Internat. J. Numer. Methods. Engrg. 28, 1787–1801 (1989)
Boffi, D., Lovadina, C.: Analysis of new augmented Lagrangian formulations for mixed finite element schemes. Numer. Math. 75, 405–419 (1997)
Braess, D.: Stability of saddle point problems with penalty. M2AN 30 No. 6 731–742 (1996)
Braess, D.: Finite Elements. Cambridge University Press, 1997
Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer-Verlag, 1991
Brezzi, F., Fortin, M., Stenberg, R.: Error analysis of mixed-interpolated elements for Reissner-Mindlin plates. Math. Models and Methods in Appl. Sci. 1, 125–151 (1991)
Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Texts in Applied Mathematics 15 Springer New York, 1994
Chapelle, D., Stenberg, R.: An optimal low-order locking-free finite element method for Reissner-Mindlin plates. Math. Mod. Meth. Appl. Sc. 8(3), 407–430 (1998)
Carstensen, C.: Quasi-interpolation and a posteriori error analysis in finite element method. M2AN 33, 1187–1202 (1999)
Carstensen, C.: Residual-Based A Posteriori Error Estimate for a Nonconforming Reissner-Mindlin Plate Finite Element. SIAM J. Numer. Anal. 39 2034–2044 (2002)
Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland, Amsterdam, 1978
Clément, P.: Approximation by finite element functions using local regularization. RAIRO Sér. Rouge Anal. Numér. R-2, 77–84 (1975)
Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numerica, 105–158 (1995)
Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Berlin–Heidelberg–New York–Tokyo: Springer, 1986
Liebermann, E.: A posteriori error estimator for a mixed finite element method for the Reissner-Mindlin plate. Math. Comp. (2000)
Lovadina, C.: A new class of finite elements for Reissner-Mindlin plates. SIAM J. Numer. Anal. 33, 2457–2467 (1996)
Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications, Vol. I. Berlin-Heidelberg-New York: Springer, 1972
Schöberl, J.: Multigrid Methods for a class of parameter dependent problems in primal variables. Technical Report 99–03 Spezialforschungsbereich F013, 1999, Johannes Kepler University, 4040-Linz, Austria
Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, 1996
Verfürth, R.: Robust a posteriori error estimators for singularly perturbed reaction-diffusion equations. Numer. Math. 78 479–493 (1998)
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the DFG Research Center MATHEON ``Mathematics for key technologies'' in Berlin and by the Austrian Science Fund Fonds zur Förderung der wissenschaftlichen Forschung, Spezialforschungsbereich F013.
Rights and permissions
About this article
Cite this article
Carstensen, C., Schöberl, J. Residual-based a posteriori error estimate for a mixed Reißner-Mindlin plate finite element method. Numer. Math. 103, 225–250 (2006). https://doi.org/10.1007/s00211-005-0669-3
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-005-0669-3