Skip to main content
Log in

An Adaptive Finite Element Method for the H- ψ Formulation of Time-dependent Eddy Current Problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we develop an adaptive finite element method based on reliable and efficient a posteriori error estimates for the Hψ formulation of eddy current problems with multiply connected conductors. Multiply connected domains are considered by making “cuts”. The competitive performance of the method is demonstrated by an engineering benchmark problem, Team Workshop Problem 7, and a singular problem with analytic solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari H., Buffa A., Nédélec J.C. (2000). A justification of eddy current model for the maxwell equations. SIAM J Appl Math 60:1805–1823

    Article  MathSciNet  MATH  Google Scholar 

  2. Amrouche C., Bernardi C., Dauge M., Girault V. (1998). Vector potentials in three-dimensional non-smooth domains. Math Methods Appl Sci 21:823–864

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška I., Rheinboldt C. (1978). Error estimates for adaptive finite element computations. SIAM J Numer Anal 15:736–754

    Article  MathSciNet  MATH  Google Scholar 

  4. Beck R., Hiptmar R., Hoppe R.H.W., Wohlmoth B. (2000). Residual based a posteriori error estimations for eddy current computation. 34:159–182

    Article  MathSciNet  MATH  Google Scholar 

  5. Beck, R., Hiptmar, R., Wohlmoth, B.: Hierarchical error estimator for eddy current computation. In: Neittaanmäki, P., Tiihonen, T. (eds.) ENUMATH 99–Proceedings of the 3rd European Conference on numerical mathematics and advanced applications, Jyväskylä, Finland, July 26-30, 2000, pp. 110–120 World Scientific, Singapore, 2000

  6. Birman M.Sh., Solomyak M.Z. (1987). L 2-Theory of the Maxwell operator in arbitary domains. Usp Mat Nauk 42:61–76 (in Russian); Russ Math Surv 43, 75–96 (1987) (in English)

    MathSciNet  Google Scholar 

  7. Bossavit A. (1998). Computational electromagnetism, variational formulations, edge elements, complementarity. Academic, Boston

    Google Scholar 

  8. Bouillault F., Ren Z., Razek A. (1990). Calculation of eddy currents in an asymmetrical conductor with a hole. COMPEL 9(Supple A):227–229

    Google Scholar 

  9. Chen Z., Dai S. (2001). Adaptive Galerkin method with error control for a dynamical Ginzburg-Landau model in superconductivity. SIAM J Numer Anal 38:1961–1985

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen Z., Dai S. (2002). On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients. SIAM J Sci Comput 24:443–462

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen Z., Jia F. (2004). An adaptive finite element method with reliable and efficient error control for linear parabolic problems. Math Comput 73:1163–1197

    Google Scholar 

  12. Chen Z., Wu H. (2003). An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J Numer Anal 41:799–826

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen Z., Nochetto R.H., Schmidt A. (2000). An adaptive finite element method with error control for the continuous casting problem. Comput Methods Appl Mech Eng 189:249–276

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, Z., Wang, L., Zheng, W.: An adaptive multilevel method for time-harmonic maxwell equations with singularities. Research Report, Institute of Computational Mathematics, Chinese Academy of Sciences (2006)

  15. Ciarlet P.G. (1978). The finite element method for elliptic problems. North-Holland, Amsterdam

    Book  MATH  Google Scholar 

  16. Clemens M., Weiland T. (1999). Transient eddy-current calculations with the FI-method. IEEE Trans Magn 35:1163–1166

    Article  Google Scholar 

  17. Costabel M., Dauge M., Nicaise S. (2003). Singularities of eddy current problems. ESAIM: Math Model Numer Anal 37:807–831

    Article  MathSciNet  MATH  Google Scholar 

  18. Dhia A.B., Hazard C., Lohrengel S. (1999). A singular field method for the solution of Maxwell’s equations in polyhedral domains. SIAM J Appl Math 59:2028–2044

    Article  MathSciNet  MATH  Google Scholar 

  19. Dular P., Henrotte F., Robert F., Genon A., Legros W. (1997). A generalized source magnetic field calculation method for inductors of any shape. IEEE Trans Magn 33:1398–1401

    Article  Google Scholar 

  20. Fujiwara K., Nakata T. (1990). Results for benchmark problem 7 (a symmetrical conductor with a hole). COMPEL 9:137–154

    Google Scholar 

  21. Girault V., Raviart P.A. (1986). Finite element methods for Naviar–Stokes equations. theory and algorithms. Springer, Berlin Heidelberg New York

    Google Scholar 

  22. Hiptmair R. (2002). Analysis of multilevel methods for eddy current problems. Math Comput 72:1–23

    MathSciNet  Google Scholar 

  23. Li K., Ma Y. (1990). Hilbert-space methods for partial differential equations in mathematical physics (I) (in Chinese). Xi’an Jiaotong University press, Xi’an (China)

    Google Scholar 

  24. Monk P. (1998). A posteriori error indicators for Maxwell’s equations. J Comp Appl Math 100:173–190

    Article  MathSciNet  MATH  Google Scholar 

  25. Morin P., Nochetto R.H., Siebert K.G. (2000). Data oscillations and convergence of adaptive FEM. SIAM J Numer Anal 38:466–488

    Article  MathSciNet  MATH  Google Scholar 

  26. Nédélec J.C. (1980). Mixed finite elements in \(\mathbb{R}^3\). Numer Math 35:315–341

    Article  MathSciNet  MATH  Google Scholar 

  27. Pasciak J.E., Zhao J. (2002). Overlapping Schwartz methods in H(curl) on polyhedral domains. East West J Numer Math 10:221–234

    MathSciNet  MATH  Google Scholar 

  28. Schmidt, A., Siebert, K.G.: ALBERT – An adaptive hierarchical finite element toolbox. the new version ALBERTA is available online from http://www.alberta-fem.de

  29. Scott L.R., Zhang S. (1990). Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comput 54:483–493

    Article  MathSciNet  MATH  Google Scholar 

  30. Stein E.M. (1970). Singular integrals and differetiability properties of functions. Princeton University Press, Princeton

    Google Scholar 

  31. Stephan, E., Maischak, M.: A posteriori error estimate for fem-bem couplings of three-dimensional electromagnetic problems. Report IFAM 72, Institut für Angewandte Mathematik, Universität Hannover, Hannover, Germany 2003

  32. Teltscher M., Stephan E., Maischak M. (2003). A residual error estimator for an electromagnetic fem-bem coupling problem in \(\mathbb{R}^3\). Report IFAM 53, Institut für Angewandte Mathematik, Universität Hannover, Hannover, Germany

    Google Scholar 

  33. Verfürth R. (1996). A review of a posteriori error estimation and adaptive mesh-refinement rechniques. Wiley, Chichester (Stuttgart)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiying Zheng.

Additional information

W. Zheng was supported in part by China NSF under the grant 10401040.

Z. Chen was supported in part by China NSF under the grant 10025102 and 10428105, and by the National Basic Research Project under the grant 2005CB321701.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, W., Chen, Z. & Wang, L. An Adaptive Finite Element Method for the H- ψ Formulation of Time-dependent Eddy Current Problems. Numer. Math. 103, 667–689 (2006). https://doi.org/10.1007/s00211-006-0008-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0008-3

AMS subject classifications

Navigation