Abstract
We construct two families of absorbing boundary conditions for the nonlinear Schrödinger equation. The first one relies on the pseudodifferential calculus and the second one relies on the paradifferential calculus. We show that some of the corresponding initial boundary value problems are well-posed. We finally present numerical experiments illustrating the efficiency of these methods.
Similar content being viewed by others
References
Antoine X., Besse C. (2002) Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation. J. Comput. Phys. 188(1): 157–175
Bony J.M. (1981) Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. Ec. Norm. Sup (4ème série). 14, 209–246
Coifman R.R., Meyer Y. (1991) Ondelettes et opérateurs III. Actualités Mathématiques. Hermann, Paris
Cole J.D. (1951) On a quasi-linear parabolic equation occurring in aerodynamics. Q. Appl. Math. 9, 225–236
Dubach, E. Nonlinear artificial boundary conditions for the viscous Burgers equation. preprint 00/04 of université de Pau et des pays de l’Adour (2000)
Durán A., Sanz-Serna J.M. (2000) The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation. IMA J. Numer. Anal. 20, 235-261
Engquist B., Majda A. (1979) Radiation boundary conditions for acoustic and elastic wave calculations. Comm. Pure Appl. Math. 32, 313–357
Gorenflo R., Mainardi F. (1997). Fractional calculus: integral and differential equations of fractional order. In: Carpinteri A., Mainardi F. (eds). Fractals and fractional calculus in continuum mechanics. Springer, Wien
Halpern L., Rauch J. (1995) Absorbing boundary conditions for diffusion equations. Numer. Math. 71, 185–224
Hayashi N., Ozawa T. (1994) Remarks on nonlinear Schrödinger equations in one space dimension. Diff. Integral Eqs. 7, 453–461
Hopf E. (1950) The partial differential equation u t +uu x =μ u xx . Comm. Pure Appl. Math. 3, 201–230
Meyer Y. Remarques sur un théorème de J. M. Bony. Suppl. ai Rend. del Circolo mat. di Palermo, pp. 1–20 (1981)
Nirenberg, L. Lectures on Linear Partial Differential Equations. In: CBMS Reg. Conf. 17, AMS, Providence RI (1976)
Szeftel J. (2003) Absorbing boundary conditions for reaction diffusion equation. IMA J. Appl. Math. 68(2): 167–184
Szeftel J. (2004) Réflexion des singularités pour l’équation de Schrödinger. Commun. Partial Differ. Eqs. 29(5–6): 707–761
Szeftel J. (2004) Design of absorbing boundary conditions for Schrödinger equations in \(\mathbb{R}^d\). SIAM J. Numer. Anal. 42(4): 1527–1551
Szeftel J. (2005) Propagation et réflexion des singularités pour l’équation de Schrödinger non linéaire. Ann. Inst. Fourier (Grenoble) 55(2): 573–671
Szeftel J. (2006) A nonlinear approach to absorbing boundary conditions for the semilinear wave equation. Math. Comp. 75, 565–594
Szeftel, J. Calcul pseudodifférentiel et paradifférentiel pour l’étude de conditions aux limites absorbantes et de propriétés qualitatives d’équations aux dérivées partielles non linéaires. Thèse de l’université Paris 13 (2004)
Whitham G.B. (1974) Linear and nonlinear waves. Wiley, New York
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Szeftel, J. Absorbing Boundary Conditions for One-dimensional Nonlinear Schrödinger Equations. Numer. Math. 104, 103–127 (2006). https://doi.org/10.1007/s00211-006-0012-7
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-006-0012-7