Skip to main content
Log in

Absorbing Boundary Conditions for One-dimensional Nonlinear Schrödinger Equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We construct two families of absorbing boundary conditions for the nonlinear Schrödinger equation. The first one relies on the pseudodifferential calculus and the second one relies on the paradifferential calculus. We show that some of the corresponding initial boundary value problems are well-posed. We finally present numerical experiments illustrating the efficiency of these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoine X., Besse C. (2002) Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation. J. Comput. Phys. 188(1): 157–175

    Article  MathSciNet  Google Scholar 

  2. Bony J.M. (1981) Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. Ec. Norm. Sup (4ème série). 14, 209–246

    MathSciNet  MATH  Google Scholar 

  3. Coifman R.R., Meyer Y. (1991) Ondelettes et opérateurs III. Actualités Mathématiques. Hermann, Paris

    Google Scholar 

  4. Cole J.D. (1951) On a quasi-linear parabolic equation occurring in aerodynamics. Q. Appl. Math. 9, 225–236

    MathSciNet  MATH  Google Scholar 

  5. Dubach, E. Nonlinear artificial boundary conditions for the viscous Burgers equation. preprint 00/04 of université de Pau et des pays de l’Adour (2000)

  6. Durán A., Sanz-Serna J.M. (2000) The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation. IMA J. Numer. Anal. 20, 235-261

    Article  MathSciNet  MATH  Google Scholar 

  7. Engquist B., Majda A. (1979) Radiation boundary conditions for acoustic and elastic wave calculations. Comm. Pure Appl. Math. 32, 313–357

    Article  MathSciNet  MATH  Google Scholar 

  8. Gorenflo R., Mainardi F. (1997). Fractional calculus: integral and differential equations of fractional order. In: Carpinteri A., Mainardi F. (eds). Fractals and fractional calculus in continuum mechanics. Springer, Wien

    Google Scholar 

  9. Halpern L., Rauch J. (1995) Absorbing boundary conditions for diffusion equations. Numer. Math. 71, 185–224

    Article  MathSciNet  MATH  Google Scholar 

  10. Hayashi N., Ozawa T. (1994) Remarks on nonlinear Schrödinger equations in one space dimension. Diff. Integral Eqs. 7, 453–461

    MathSciNet  MATH  Google Scholar 

  11. Hopf E. (1950) The partial differential equation u t +uu x u xx . Comm. Pure Appl. Math. 3, 201–230

    Article  MathSciNet  MATH  Google Scholar 

  12. Meyer Y. Remarques sur un théorème de J. M. Bony. Suppl. ai Rend. del Circolo mat. di Palermo, pp. 1–20 (1981)

  13. Nirenberg, L. Lectures on Linear Partial Differential Equations. In: CBMS Reg. Conf. 17, AMS, Providence RI (1976)

  14. Szeftel J. (2003) Absorbing boundary conditions for reaction diffusion equation. IMA J. Appl. Math. 68(2): 167–184

    Article  MathSciNet  MATH  Google Scholar 

  15. Szeftel J. (2004) Réflexion des singularités pour l’équation de Schrödinger. Commun. Partial Differ. Eqs. 29(5–6): 707–761

    Article  MathSciNet  MATH  Google Scholar 

  16. Szeftel J. (2004) Design of absorbing boundary conditions for Schrödinger equations in \(\mathbb{R}^d\). SIAM J. Numer. Anal. 42(4): 1527–1551

    Article  MathSciNet  MATH  Google Scholar 

  17. Szeftel J. (2005) Propagation et réflexion des singularités pour l’équation de Schrödinger non linéaire. Ann. Inst. Fourier (Grenoble) 55(2): 573–671

    MathSciNet  MATH  Google Scholar 

  18. Szeftel J. (2006) A nonlinear approach to absorbing boundary conditions for the semilinear wave equation. Math. Comp. 75, 565–594

    Article  MathSciNet  MATH  Google Scholar 

  19. Szeftel, J. Calcul pseudodifférentiel et paradifférentiel pour l’étude de conditions aux limites absorbantes et de propriétés qualitatives d’équations aux dérivées partielles non linéaires. Thèse de l’université Paris 13 (2004)

  20. Whitham G.B. (1974) Linear and nonlinear waves. Wiley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémie Szeftel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szeftel, J. Absorbing Boundary Conditions for One-dimensional Nonlinear Schrödinger Equations. Numer. Math. 104, 103–127 (2006). https://doi.org/10.1007/s00211-006-0012-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0012-7

Mathematics Subject Classification (2000)