Skip to main content
Log in

Quasi-least-squares finite element method for steady flow and heat transfer with system rotation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Two quasi-least-squares finite element schemes based on L 2 inner product are proposed to solve a steady Navier–Stokes equations, coupled to the energy equation by the Boussinesq approximation and augmented by a Coriolis forcing term to account for system rotation. The resulting nonlinear systems are linearized around a characteristic state, resulting in linearized least-squares models that yield algebraic systems with symmetric positive definite coefficient matrices. Existence of solutions are investigated and a priori error estimates are obtained. The performance of the formulation is illustrated by using a direct iteration procedure to treat the nonlinearities and shown theoretical convergent rate for general initial guess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A. (1975). Sobolev Spaces. Academic, New York

    MATH  Google Scholar 

  2. Agmon S., Douglis A., Nirenberg L. (1964). Estimates near the boundary for solution of elliptic partial differential equations satisfying general boundary conditions II. Commun. Pure Appl. Math. 17:35–92

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold D.N., Scott L.R., Vogelius M. (1988). Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon. Ann. Scuola. Norm. Sup. Pisa Cl. Sci.-Serie IV XV:169–192

    MathSciNet  Google Scholar 

  4. Aziz A.K., Kellogg R.B. (1985). Stephens. Least-squares method for elliptic systems. Math. Comp. 14:53–70

    MathSciNet  Google Scholar 

  5. Bochev P.B. (1997). Analysis of least-squares finite element method for Navier–Stokes equations. SIAM J. Numer. Anal. 34:1817–1844

    Article  MathSciNet  MATH  Google Scholar 

  6. Bochev P.B. (1999). Negative norm least-squares finite element mfethod for velocity–vorticity–pressure Navier–Stokes equations. Numer. Meth. Part. Diff. Eqs. 15:237–256

    Article  MathSciNet  MATH  Google Scholar 

  7. Bochev P.B., Cai Z., Manteuffel T.A., McCormick S.F. (1998). Analysis of velocity-flux least-squares principles for the Stokes equations: Part I. SIAM J. Numer. Anal. 35:990–1009

    Article  MathSciNet  MATH  Google Scholar 

  8. Bochev P.B., Manteuffel T.A., McCormick S.F. (1999). Analysis of velocity-flux least-squares principles for the Stokes equations: Part II. SIAM J. Numer. Anal. 36:1125–1144

    Article  MathSciNet  MATH  Google Scholar 

  9. Bochev P.B., Gunzburger M.D. (1993). Accuracy of least-squares methods for the Navier–Stokes equations. Comput. Fluids 22:549–563

    Article  MathSciNet  MATH  Google Scholar 

  10. Bochev P.B., Gunzburger M.D. (1994). Analysis of least-squares finite element method of the Stokes equations. Math. Comp. 63:479–506

    Article  MathSciNet  MATH  Google Scholar 

  11. Bochev P.B., Gunzburger M.D. (1995). Least-squares method for the velocity–pressure–stress formulation of the Stokes equations. Comput. Meth. Appl. Mech. Eng. 126:267–2877

    Article  MathSciNet  MATH  Google Scholar 

  12. Bramble J.H., Pasciark J.E. (1996). Least-squares methods for the Stokes equations based on a discrete minus one inner project. J. Comp. Appl. Math. 74:155–173

    Article  MATH  Google Scholar 

  13. Bramble J.H., Schatz A.H. (1970). Rayleigh–Ritz–Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions. Commun. Pure Appl. Math. 23:653–675

    Article  MathSciNet  MATH  Google Scholar 

  14. Bramble J.H., Schatz A.H. (1971). Least-squares methods for 2m-th order elliptic boundary-value problems. Math. Comp. 25:1–32

    Article  MathSciNet  MATH  Google Scholar 

  15. Brenner S.C., Scott L.R. (1994). Mathematical Theory of Finite Element Methods. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  16. Brezzi F., Fortin M. (1991). Mixed and hybrid finite element methods. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  17. Cai Z., Lazarov R., Manteuffel T.A., McCormick S.F. (1994). First-order least squares for second-order partial differential equations: Part I. SIAM J. Numer. Anal. 6(31):1785–1799

    Article  MathSciNet  Google Scholar 

  18. Cai Z., Manteuffel T.A., McCormick S.F. (1997). First-order system least squares for velocity–vorticity–pressure form of the Stokes equations, with alication to linear elasticity. SIAM J. Numer. Anal. 34:1727–1741

    Article  MathSciNet  MATH  Google Scholar 

  19. Carey G.F., Pehlivanov A.I., Vassilevski P.S. (1995). Least-squares mixed finite element method for non-selfadjoint elliptic problem. SIAM J. Sci. Comput. 5(16):1126–1136

    Article  MathSciNet  Google Scholar 

  20. Chang C.L., Jiang B.N. (1990). An error analysis of least-squares finite element method of velocity–pressure–vorticity formulation for the Stokes problem. Comput. Methods Appl. Mech. Eng. 84:247–255

    Article  MathSciNet  MATH  Google Scholar 

  21. Chang C.L. (1992). Finite element approximation for grad-div type systems in the plane. SIAM J. Numer. Anal. 29:452–461

    Article  MathSciNet  MATH  Google Scholar 

  22. Chang, C.L.: A finite element method for first order elliptic system in three dimension. Appl. Math. Comput. 23(1987),171–184 (1987).

    Google Scholar 

  23. Chang C.L. (1990). A least-squares finite element method for the Helmholtz equation. Comput. Methods. Appl. Mech. Eng. 83:1–7

    Article  MATH  Google Scholar 

  24. Chang C.L. (1994). An error estimate of the least squares finite element method for Stokes problem in three dimension. Math. Comp. 207(63):41–50

    Article  Google Scholar 

  25. Chang C.L. (1990). A mixed finite element method for the Stokes problem: an acceleration-pressure formulation. Appl. Math. Comput. 36:135–146

    Article  MathSciNet  MATH  Google Scholar 

  26. Chang C.L., Nelson J.J. (1997). Least-squares finite element method for Stokes problem with zero residual of mass conservation. SIAM J. Numer. Anal. 34:480–489

    Article  MathSciNet  MATH  Google Scholar 

  27. Chang C.L., Yang S.-Y (2002). Analysis of the L 2 least-squares finite method for the velocity–vorticity–pressure Stokes equations with velocity boundary conditions. Appl. Math. Comput. 130(1):121–144

    Article  MathSciNet  MATH  Google Scholar 

  28. Chang C.L., Yang S.Y., Hsu C.H. (1995). A least-squares finite element method for incompressible flow in stress-velocity-pressure version. Comput. Methods Appl. Mech. Eng. 128:1–9

    Article  MathSciNet  MATH  Google Scholar 

  29. Ciarlet P.G. (1978). Finite Element Methods for Elliptic Problems. North-Holland, New York

    Book  Google Scholar 

  30. Cheng K.C., Wang L.Q. (1995). Secondary flow phenomena in rotating radial straight pipes. Int. J. Rotating Mach. 2:103–111

    Article  MathSciNet  Google Scholar 

  31. Cheng K.C., Wang L.Q. (1996). Secondary flow phenomena in a rotating radial straight square channel. J. Flow Vis. Image Process. 3:237–246

    Google Scholar 

  32. Doering C.R., Gibbon J.D. (1995). Applied Analysis of the Navier–Stokes Equations. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  33. Fix G.J., Rose M.E. (1985). A comparative study of finite element and finite difference methods for Cauchy-Riemann type equations. SIAM J. Numer. Anal. 22:250–261

    Article  MathSciNet  MATH  Google Scholar 

  34. Fix G.J., Gunzburger M.D., Nicolaides R.A. (1979). On finite element methods of the least squares type. Comput. Math. Appl. 5:87–98

    Article  MathSciNet  MATH  Google Scholar 

  35. Franca L.P., Hughes T.J.R. (1993). Convergence analysis of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier–Stokes equations. Comput. Meth. Appl. Mech. Eng. 105:285–298

    Article  MathSciNet  MATH  Google Scholar 

  36. Girault, V., Raviart, P.A.: Finite element methods for Navier–Stokes Equations: Theory and Algorithms. Spring, Berlin Heidelberg New York 1986 (1985)

  37. Gunzburger M.D. (1989). Finite Element Methods Viscous Incompressible Flows. Academic, Boston

    MATH  Google Scholar 

  38. Greenspan H.P. (1969). The Theory of Rotating Fluids. Cambridge University Press, Cambridge

    Google Scholar 

  39. Grisvard P. (1985). Elliptic Problems in Non-smooth Domains. Pitman, London

    Google Scholar 

  40. Jiang B.N. (1992). A least squares finite element for incompressible Navier–Stokes problem. Int. J. Numer. Methods Fluids 14:843–859

    Article  MATH  Google Scholar 

  41. Jiang B.N., Chang C.L. (1990). Least squares finite element for the Stokes problem. Comput. Methods Appl. Mech. Eng. 78:297–311

    Article  MathSciNet  MATH  Google Scholar 

  42. Jiang B.N., Carey G.F. (1987). Adaptive refinement for least squares finite element with element-by-element conjugate gradient solution. Int. J. Numer. Methods Eng. 24:569–580

    Article  MathSciNet  MATH  Google Scholar 

  43. Jiang B.N., Povinelli L.A. (1990). Least-squares finite element method for fluid dynamics. Comput. Methods Appl. Mech. Eng. 81:13–37

    Article  MathSciNet  MATH  Google Scholar 

  44. Jiang B.N., Povinelli L.A. (1990). Optimal least squares finite element method for elliptic problems. Comput. Methods Appl. Mech. Eng. 102:199–212

    Article  MathSciNet  Google Scholar 

  45. Jiang B.N., Lin T.L., Povinelli L.A. (1990). Large-scale computation of incompressible viscous flow by least squares finite element method Comput. Methods Appl. Mech. Eng. 81:13–37

    Article  MATH  Google Scholar 

  46. Ladyzhenskaya O.A. (1969). The Mathematical Theory of Viscous Incompressible Flows. Gordon and Breach, London

    Google Scholar 

  47. Lions J.L., Magenes E. (1970). Nonhomogeneous Boundary Value Problems and Applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  48. Morris W.D. (1981). Heat Transfer and Fluid Flow in Rotating Coolant Channels. Wiley, New York

    Google Scholar 

  49. Neittaanmaäki P., Saranen J. (1981). Finite element approximation of vector fields given by curl and divergence. Math. Mech. Appl. Sci. 3:328–335

    Article  MathSciNet  Google Scholar 

  50. Pehlivanov A.I., Carey G.F., Lazarov R.D. (1994). Least-squares mixed finite elements for second order elliptic problems. SIAM. Numer. Anal. 6(31):51–62

    MathSciNet  Google Scholar 

  51. Pehlivanov A.I., Carey G.F. (1994). Error estimate for least-squares mixed finite elements. RAIRO Model. Math. Numer. Anal. 5(28):499–516

    MathSciNet  Google Scholar 

  52. Selmi M., Naudakumar K., Finlay W.H. (1994). A bifurcation study of viscous flow through a rotating curved duet. J. Fluid Mech. 262:353–375

    Article  MATH  Google Scholar 

  53. Selmi M., Naudakumar K. (1999). Bifurcation study of flow through a rotating curved duet. Phys. Fluids 11:2030–2043

    Article  MathSciNet  Google Scholar 

  54. Wang L.Q. (2000). Physical constraints of turbulence modeling. In: Wang J.J. (eds) Developments and Perspectives in Turbulence. Science, Beijing, pp 189–208

    Google Scholar 

  55. Wang L.Q. (1997). Buoyancy-force-driven transition in flow structures and their effects on heat transfer in a rotating curved channel. Int. J. Heat Mass Transf. 40:223–235

    Article  MATH  Google Scholar 

  56. Wang L. (1997). Effect of spanwise rotation on centrifugal instability in rotating curved non-isothermal flows, Comput. Mech. 19:420–433

    MATH  Google Scholar 

  57. Wang L. (1997). The effect of negative spanwise rotation on Dean vortices. ASME J. Fluids Eng. 119:718–721

    Article  Google Scholar 

  58. Wang L. (1999). Competition of Coriolis instability with centrifugal instability and its effects on heat transfer. Int. J. Non-linear Mech. 34:35–50

    Article  MATH  Google Scholar 

  59. Wang L. (2002). A critical review of turbulence modeling: physical constraints and physics- preserving models. Trends Heat Mass Momentum Transf. 8:153–195

    Google Scholar 

  60. Wang L.Q., Cheng K.C. (1995). Flow in curved channels with a low negative rotation speed. Phys. Rev. E51:1155–1161

    Article  Google Scholar 

  61. Wang L.Q., Cheng K.C. (1996). Flow transitions and combined free and forced convective heat transfer in rotating curved channels: the case of positive rotation. Phys. Fluids 8:1553–1573

    Article  MATH  Google Scholar 

  62. Wang L.Q., Cheng K.C. (1996). Flow transitions and combined free and forced convective heat transfer in a rotating curved circular tube. Int. J. Heat Mass Transf. 39:3381–3400

    Article  Google Scholar 

  63. Wang L., Cheng K.C. (1997). Visualization of flows in curved channels with a moderate or high rotation speed. Int. J. Rotating Mach. 3:215–231

    Article  Google Scholar 

  64. Wang L.Q., Yang T.L. (2004). Bifurcation and stability of forced convection in curved ducts of square cross-section. Int. J. Heat Mass Transf. 47:2971–2987

    Article  MATH  Google Scholar 

  65. Wang L., Yang T.L. (2004). Bifurcation and stability of forced convection in curved ducts of square cross-section. Int. J. Heat Mass Transf. 47:2971–2987

    Article  MATH  Google Scholar 

  66. Wang L., Yang T.L. (2004). Multiplicity and stability of convection in curved ducts: review and progress. Adv Heat Transf. 38:203–255

    Google Scholar 

  67. Wang L., Yang T.L. (2005). Periodic oscillation in curved duct flows. Phys. D 200:296–302

    Article  Google Scholar 

  68. Wang, L., Yang, T.L. (2005). Numerical simulation of multiplicity and stability of mixed convection in rotating curved ducts. Int. J. Rotating Mach. 2005, 168–178

  69. Wang L., Pang S.Y., Cheng L. (2005). Bifurcation and stability of forced convection in tightly coiled ducts: multiplicity. Chaos Solitons Fractals 26:337–352

    Article  MATH  Google Scholar 

  70. Wang L., Pang S.Y., Cheng L. (2006). Bifurcation and stability of forced convection in tightly coiled ducts: stability. Chaos Solitons Fractals 27:991–1005

    Article  MATH  Google Scholar 

  71. Wang L., Xu M.T. (2005). Property of period-doubling bifurcations. Chaos Solitons Fractals 24:527–532

    Article  MATH  Google Scholar 

  72. Yang S.-Y., Liu J.-L. (1998). A unified analysis of a weighted least squares method for first-order system. Appl. Math. Comput. 92:9–27

    Article  MathSciNet  MATH  Google Scholar 

  73. Yang S.-Y. (1998). On the convergence and stability of the standard least squares finite element method for first-order elliptic system. Appl. Math. Comput. 93:51–62

    Article  MathSciNet  MATH  Google Scholar 

  74. Yang S.-Y. (1998). Error analysis of a weighted least squares finite element method for 2D incompressible flow in velocity-stress-pressure formulation. Math. Methods Appl. Sci.21:1637–1654

    Article  MathSciNet  MATH  Google Scholar 

  75. Yang S.-Y., Chang C.L. (1998). A two-stage least squares finite element method for the stress-pressure-displacement elasticity equations. Numer. Methods Partial Differ. Equ. 14:297–315

    Article  MathSciNet  MATH  Google Scholar 

  76. Yang D.P. (2000). Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems. Math. Comput. 69:929–963

    MATH  Google Scholar 

  77. Yang D.P. (1999). Some least-squares Galerkin procedures for first-order time-dependent convection-diffusion system. Comput. Methods Appl. Mech. Eng. 180:81–95

    Article  MATH  Google Scholar 

  78. Yang D.P., Wang L.Q. (2005). Two finite-element schemes for steady convective heat transfer with system rotation and variable thermal properties. Numer. Heat Transf. B 47:343–360

    Article  Google Scholar 

  79. Yang T.L., Wang L. (2000). Microscale flow bifurcation and its macroscale implications in periodic porous media. Comput. Mech. 26:520–527

    Article  MATH  Google Scholar 

  80. Yang T.L., Wang L. (2000). Flows through porous media: a theoretical development at macroscale. Transport Porous Media 39:1–24

    Article  MATH  Google Scholar 

  81. Yang T.L., Wang L. (2001). Solution structure and stability of viscous flow in curved square ducts. ASME: J. Fluids Eng. 123:863–868

    Article  Google Scholar 

  82. Yang T.L., Wang L. (2002). Body-force-driven multiplicity and stability of combined free and forced convection in curved ducts: Coriolis force. Comput. Mech. 29:520–531

    Article  MATH  Google Scholar 

  83. Yang T.L., Wang L. (2002). Bifurcation and stability of combined free and forced convection in rotating curved ducts of square cross-section. Int. J. Heat Mass Transf. 46:613–629

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danping Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, D., Wang, L. Quasi-least-squares finite element method for steady flow and heat transfer with system rotation. Numer. Math. 104, 377–411 (2006). https://doi.org/10.1007/s00211-006-0019-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0019-0

Keywords

AMS Subject Classification

Navigation