Skip to main content

Advertisement

Log in

Error analysis of an enhanced DtN-FE method for exterior scattering problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this work we analyze the convergence of the high-order Enhanced DtN-FEM algorithm, described in our previous work (Nicholls and Nigam, J. Comput. Phys. 194:278–303, 2004), for solving exterior acoustic scattering problems in \({\mathbf{R}^{2}}\) . This algorithm consists of using an exact Dirichlet-to-Neumann (DtN) map on a hypersurface enclosing the scatterer, where the hypersurface is a perturbation of a circle, and, in practice, the perturbation can be very large. Our theoretical work had shown the DtN map was analytic as a function of this perturbation. In the present work, we carefully analyze the error introduced by virtue of using this algorithm. Specifically, we give a full account of the error introduced by truncating the DtN map at a finite order in the perturbation expansion, and study the well-posedness of the associated formulation. During computation, the Fourier series of the Dirichlet data on the artificial boundary must be truncated. To deal with the ensuing loss of uniqueness of solutions, we propose a modified DtN map, and prove well-posedness of the resulting problem. We quantify the spectral error introduced due to this truncation of the data. The key tools in the analysis include a new theorem on the analyticity of the DtN map in a suitable Sobolev space, and another on the perturbation of non-self-adjoint Fredholm operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abarbanel, S., Gottlieb, D., Hesthaven, J.S.: Long time behavior of the perfectly matched layer equations in computational electromagnetics. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol. 17, pp. 405–422 (2002)

  2. Adams, R.A.: Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London (1975). Pure and Applied Mathematics, vol. 65

  3. Atkinson, K., Han, W.: Theoretical Numerical Analysis. Texts in Applied Mathematics, vol. 39. Springer, Berlin Heidelberg New York (2001). A functional analysis framework

  4. Barrenechea G.R., Barrientos M.A., Gatica G.N. (1998) On the numerical analysis of finite element and Dirichlet-to-Neumann methods for nonlinear exterior transmission problems. Numer. Funct. Anal. Optim. 19(7–8): 705–735

    MATH  MathSciNet  Google Scholar 

  5. Barrenechea G.R., Gatica G.N., Hsiao G.C. (1998) Weak solvability of interior transmission problems via mixed finite elements and Dirichlet-to-Neumann mappings. J. Comput. Appl. Math., 100(2): 145–160

    Article  MATH  MathSciNet  Google Scholar 

  6. Alvin Bayliss, Max Gunzburger, Eli Turkel (1982) Boundary conditions for the numerical solution of elliptic equations in exterior regions. SIAM J. Appl. Math. 42(2): 430–451

    Article  MathSciNet  MATH  Google Scholar 

  7. Eliane Bécache, Patrick Joly. (2002) On the analysis of Bérenger’s perfectly matched layers for Maxwell’s equations. M2AN Math. Model. Numer. Anal. 36(1): 87–119

    Article  MathSciNet  MATH  Google Scholar 

  8. Berenger J.-P. (1994) A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2): 185–200

    Article  MATH  MathSciNet  Google Scholar 

  9. Braess, D.: Finite Elements, 2nd edn. Cambridge University Press, Cambridge, (2001). Theory, fast solvers, and applications in solid mechanics, Translated from the 1992 German edition by Larry L. Schumaker.

  10. Bruno O.P., Kunyansky L.A. (2001) A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J. Comput. Phys. 169(1): 80–110

    Article  MATH  MathSciNet  Google Scholar 

  11. Bruno, O.P., Kunyansky, L.A.: Surface scattering in three dimensions: an accelerated high-order solver. Proc. R. Soc. Lond. Proc. A 457 (2001)

  12. Calderón A.P. (1977) Cauchy integrals on Lipschitz curves and related operators. Proc. Nat. Acad. Sci. USA 75, 1324–1327

    Article  Google Scholar 

  13. Coifman, R., Meyer, Y.: Nonlinear harmonic analysis and analytic dependence. In: Pseudodifferential Operators and Applications (Notre Dame, Ind., 1984), pp. 71–78. Amer. Math. Soc. (1985)

  14. Colton D., Kress R. (1998) Inverse acoustic and electromagnetic scattering theory. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  15. Craig W., Nicholls D.P. (2000) Traveling two and three dimensional capillary gravity water waves. SIAM J. Math. Anal. 32(2): 323–359

    Article  MATH  MathSciNet  Google Scholar 

  16. Craig W., Schanz U., Sulem C. (1997) The modulation regime of three-dimensional water waves and the Davey–Stewartson system. Ann. Inst. Henri Poincaré 14, 615–667

    Article  MATH  MathSciNet  Google Scholar 

  17. Demkowicz L., Ihlenburg F. (2001) Analysis of a coupled finite-infinite element method for exterior Helmholtz problems. Numer. Math. 88(1): 43–73

    Article  MATH  MathSciNet  Google Scholar 

  18. Djellouli, R., Farhat, C., Macedo, A., Tezaur, R.: Finite element solution of two-dimensional acoustic scattering problems using arbitrarily shaped convex artificial boundaries. J. Comput. Acoust. 8(1), 81–99 (2000). Finite elements for wave problems (Trieste, 1999)

    Google Scholar 

  19. Bjorn Engquist and Andrew Majda. Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629–651 (1977)

    Google Scholar 

  20. Evans L.C. (1998) Partial Differential Equations. American Mathematical Society, Providence RI

    MATH  Google Scholar 

  21. Feng, K.: Finite element method and natural boundary reduction. In Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Warsaw, 1983), pp. 1439–1453. Warsaw (1984)

  22. Feng, K., Yu, D.H.: Canonical integral equations of elliptic boundary value problems and their numerical solutions. In: Proceedings of China–France Symposium on the Finite Element Method, pp. 211–252. Science Press, Beijing (1982)

  23. Folland, G.B.: Introduction to Partial Differential Equations. Princeton University Press, Princeton, NJ (1976). Preliminary informal notes of university courses and seminars in mathematics, Mathematical Notes

  24. Ganesh M., Graham I.G. (2004) A high-order algorithm for obstacle scattering in three dimensions. J. Comput. Phys. 198(1): 211–242

    Article  MATH  MathSciNet  Google Scholar 

  25. Gilbarg D., Trudinger N.S. (1983) Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  26. Givoli D. (1999) Recent advances in the DtN FE method. Arch. Comput. Methods Eng. 6(2): 71–116

    MathSciNet  Google Scholar 

  27. Givoli D. (1991) Nonreflecting boundary conditions. J. Comput. Phys. 94(1): 1–29

    Article  MATH  MathSciNet  Google Scholar 

  28. Givoli, D.: Numerical Methods for Problems in Infinite Domains. Studies in Applied Mechanics, vol. 33. Elsevier, Amsterdam (1992)

  29. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA (1977). CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26

  30. Grote M.J., Keller J.B. (1995) Exact nonreflecting boundary conditions for the time dependent wave equation. SIAM J. Appl. Math. 55(2): 280–297

    Article  MATH  MathSciNet  Google Scholar 

  31. Grote M.J., Keller J.B. (1995) On nonreflecting boundary conditions. J. Comput. Phys. 122(2): 231–243

    Article  MATH  MathSciNet  Google Scholar 

  32. Grote M.J., Keller J.B. (1998) Nonreflecting boundary conditions for Maxwell’s equations. J. Comput. Phys. 139(2): 327–342

    Article  MATH  MathSciNet  Google Scholar 

  33. Guidotti P. (2003) A new first kind boundary integral formulation for the Dirichlet-to-Neumann map in 2D. J. Comput. Phys. 190(1): 325–345

    Article  MATH  MathSciNet  Google Scholar 

  34. Han H.D., Wu X.N. (1985) Approximation of infinite boundary condition and its application to finite element methods. J. Comput. Math. 3(2): 179–192

    MATH  MathSciNet  Google Scholar 

  35. Harari I., Hughes T.J.R. (1992) Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains. Comput. Methods Appl. Mech. Eng. 97(1): 103–124

    Article  MATH  MathSciNet  Google Scholar 

  36. Hsiao, G., Wendland, W.: A finite element method for some integral equations of the first kind. J. Math. Anal. Appl. 58 (1977)

  37. Hu B., Nicholls D.P. (2005) Analyticity of Dirichlet–Neumann operators on Hölder and Lipschitz domains. SIAM J. Math. Anal. 37(1): 302–320

    Article  MATH  MathSciNet  Google Scholar 

  38. Jia Z.P., Wu J.M., Yu D.H. (2001) The coupling natural boundary–finite element method for solving 3–D exterior Helmholtz problem. Math. Numer. Sinica 23(3): 357–382

    MATH  MathSciNet  Google Scholar 

  39. Johnson C., Nédélec J.-C. (1980) On the coupling of boundary integral and finite element methods. Math. Comput. 35(152): 1063–1079

    Article  MATH  Google Scholar 

  40. Kato T. (1976) Perturbation Theory for Linear Operators. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  41. Keller J.B., Givoli D. (1989) Exact nonreflecting boundary conditions. J. Comput. Phys. 82(1): 172–192

    Article  MATH  MathSciNet  Google Scholar 

  42. Ladyzhenskaya O.A., Ural’tseva N.N. (1968) Linear and Quasilinear Elliptic Equations. Academic Press, New York

    MATH  Google Scholar 

  43. Nicholls D.P., Nigam N. (2004) Exact non-reflecting boundary conditions on general domains. J. Comput. Phys. 194(1): 278–303

    Article  MATH  MathSciNet  Google Scholar 

  44. Nicholls D.P., Reitich F. (2001) A new approach to analyticity of Dirichlet-Neumann operators. Proc. Roy. Soc. Edinburgh Sect. A 131(6): 1411–1433

    MATH  MathSciNet  Google Scholar 

  45. Nicholls D.P., Reitich F. (2001) Stability of high-order perturbative methods for the computation of Dirichlet-Neumann operators. J. Comput. Phys. 170(1): 276–298

    Article  MATH  MathSciNet  Google Scholar 

  46. Nicholls D.P., Reitich F. (2003) Analytic continuation of Dirichlet-Neumann operators. Numer. Math. 94(1): 107–146

    Article  MATH  MathSciNet  Google Scholar 

  47. Ushijima T. (2001) An FEM–CSM combined method for planar exterior Laplace problems. Japan J. Indust. Appl. Math. 18, 359–382

    Article  MATH  MathSciNet  Google Scholar 

  48. Wilcox C.H. (1975) Scattering Theory for the d’Alembert Equation in Exterior Domains Lecture Notes in Mathematics, vol 442. Springer, Berlin Heidelberg New York

    Google Scholar 

  49. Wu J.M., Yu D.H. (1999) The natural integral equation of 3–D exterior Helmholtz problem and its numerical solution. Chinese J. Comput. Phys. 16(5): 449–456

    MathSciNet  Google Scholar 

  50. Yu D.H. (1983) Coupling canonical boundary element method with FEM to solve harmonic problem over cracked domain. J. Comput. Math. 1(3): 195–202

    MATH  Google Scholar 

  51. Yu D.H. (1985) Approximation of boundary conditions at infinity for a harmonic equation. J. Comput. Math. 3(3): 219–227

    MATH  MathSciNet  Google Scholar 

  52. Yu D.H. (1993) Mathematical Theory of Natural Boundary Element Method. Science Press, Beijing

    Google Scholar 

  53. Yu D.H. (2002) The Natural Boundary Integral Method and its Application. Science Press & Kluwer Academic Publishers

  54. Yu D.H., Jia Z.P. (2000) The non–overlapping DDM based on natural boundary reduction for 2–D exterior Helmholtz problem. Math Numer. Sinica 22(2): 227–240

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilima Nigam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholls, D.P., Nigam, N. Error analysis of an enhanced DtN-FE method for exterior scattering problems. Numer. Math. 105, 267–298 (2006). https://doi.org/10.1007/s00211-006-0040-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0040-3

Keywords