Abstract
We derive a new numerical method for computing the Hamiltonian Schur form of a Hamiltonian matrix \({\mathcal{M}\in \mathbb{R}^{2n\times 2n}}\) that has no purely imaginary eigenvalues. We demonstrate the properties of the new method by showing its performance for the benchmark collection of continuous-time algebraic Riccati equations. Despite the fact that no complete error analysis for the method is yet available, the numerical results indicate that if no eigenvalues of \({\mathcal{M}}\) are close to the imaginary axis then the method computes the exact Hamiltonian Schur form of a nearby Hamiltonian matrix and thus is numerically strongly backward stable. The new method is of complexity \({\mathbf{O}(n^{3})}\) and hence it solves a long-standing open problem in numerical analysis.
Similar content being viewed by others
References
Ammar G.S., Mehrmann V. (1991): On Hamiltonian and symplectic Hessenberg forms. Linear Algebra Appl. 149, 55–72
Ammar G.S., Benner P., Mehrmann V. (1993): A multishift algorithm for the numerical solution of algebraic Riccati equations. Electr. Trans. Numer. Anal. 1, 33–48
Arnold, W.F., III, Laub, A.J.: Generalized eigenproblem algorithms and software for algebraic Riccati equations. Proc. IEEE 72, 1746–1754 (1984)
Benner, P., Kressner, D.: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices II. Submitted. See also http://www.math.tu-berlin.de/~kressner/hapack/ (2004)
Benner, P., Laub, A., Mehrmann, V.: A collection of benchmark examples for the numerical solution of algebraic Riccati equations I: Continuous-time case. Technical Report SPC 95_22, Fak. f. Mathematik, TU Chemnitz–Zwickau, 09107 Chemnitz, FRG. http://www.mathematik. tu-chemnitz.de (1995)
Benner P., Laub A.J., Mehrmann V. (1997): Benchmarks for the numerical solution of algebraic Riccati equations. IEEE Contr. Syst. Mag. 7, 18–28
Benner P., Mehrmann V., Xu H. (1997): A new method for computing the stable invariant subspace of a real Hamiltonian matrix. J. Comput. Appl. Math. 86, 17–43
Benner P., Mehrmann V., Xu H. (1998): A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils. Numer. Math. 78(3):329–358
Benner P., Mehrmann V., Xu H. (1999): A note on the numerical solution of complex Hamiltonian and skew-Hamiltonian eigenvalue problems. Electr. Trans. Numer. Anal. 8, 115–126
Benner P., Mehrmann V., Xu H. (2002): Perturbation analysis for the eigenvalue problem of a formal product of matrices. BIT 42(1): 1–43
Benner, P., Kreß ner, D.: HAPACK, software for (skew-)Hamiltonian eigenvalue problems (2003)
Bojanczyk A., Golub G.H., Van Dooren P. (1992): The periodic Schur decomposition; algorithms and applications. Proc. SPIE Conf. 1770, 31–42
Bora, S., Mehrmann, V.: Perturbation theory for structured matrix pencils arising in control theory. SIAM J. Matrix Anal. Appl. (2006) (to appear)
Bunch J.R. (1987): The weak and strong stability of algorithms in numerical algebra. Linear Algebra Appl. 88, 49–66
Bunse-Gerstner, A., Byers, R., Mehrmann, V.: Numerical methods for algebraic Riccati equations. In: Bittanti, S. (ed.) Proc. Workshop on the Riccati Equation in Control, Systems, and Signals pp. 107–116. Como, Italy (1989)
Bunse-Gerstner A., Mehrmann V. (1986): A symplectic QR-like algorithm for the solution of the real algebraic Riccati equation. IEEE Trans. Automat. Control AC-31, 1104–1113
Byers, R.: Hamiltonian and symplectic algorithms for the algebraic Riccati equation. PhD thesis, Cornell University, Dept. Comp. Sci., Ithaca (1983)
Byers R. (1986): A Hamiltonian QR-algorithm. SIAM J. Sci. Statist. Comput 7, 212–229
Chu, D., Liu, X., Mehrmann, V.: A numerically backwards stable method for computing the Hamiltonian schur form. Preprint 2004/24. url: http://www.math.tu-berlin.de/preprints/
Demmel J.W. (1987): Three methods for refining estimates of invariant subspaces. Computing 38, 43–57
Freiling G., Mehrmann V., Xu H. (2002): Existence, uniqueness and parametrization of Lagrangian invariant subspaces. SIAM J. Matrix Anal. Appl. 23, 1045–1069
Golub G.H., Van Loan C.F. (1996): Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore
Hench J.J., Laub A.J. (1994): Numerical solution of the discrete-time periodic Riccati equation. IEEE Trans. Automat. Control 39, 1197–1210
Higham N.J. (1996): Accuracy and Stability of Numerical Algorithms. SIAM Publications, Philadelphia
Abou Kandil H., Freiling G., Ionescu V., Jank G. (2003): Matrix Riccati Equations in Control and Systems Theory. Birkhäuser, Verlag, Basel
Konstantinov M.M., Mehrmann V., Petkov P.Hr. (2002): Perturbation analysis for the Hamiltonian Schur form. SIAM J. Matrix Anal. Appl. 23, 387–424
Kreßner, D.: Numerical methods and software for general and structured eigenvalue problems. PhD thesis, TU Berlin, Institut für Mathematik, Berlin (2004)
Kreßner D. (2004): The periodic QR algorithm is a disguised QR algorithm. Linear Algebra Appl. 417, 423–433
Kressner D. (2005): Perturbation bounds for isotropic invariant subspaces of skew-Hamiltonian matrices. SIAM J. Matrix Anal. Appl. 26(4): 947–961
Lancaster P., Rodman L. (1995): The Algebraic Riccati Equation. Oxford University Press, Oxford
Laub, A.J.: A Schur method for solving algebraic Riccati equations. IEEE Trans. Automat. Control AC-24, 913–921 (1979) (See also Proc. 1978 CDC (Jan. 1979) pp. 60–65).
Laub A.J. (1991): Invariant subspace methods for the numerical solution of Riccati equations. In: Bittanti S., Laub A.J., Willems J.C. (eds) The Riccati Equation. Springer, Berlin Heidelberg New York, pp. 163–196
Lin, W.-W., Mehrmann, V., Xu, H.: Canonical forms for Hamiltonian and symplectic matrices and pencils. Linear Algebra Appl. 301–303, 469–533 (1999)
The MathWorks, Inc., Cochituate Place, 24 Prime Park Way, Natick, Mass, 01760. MATLAB Version 6.5 (2002)
Mehrmann V. (1991): The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution. Lecture Notes in Control and Information Sciences, vol. 163. Springer, Berlin Heidelberg New York
Mehrmann V., Watkins D. (2001): Structure-preserving methods for computing eigenpairs of large sparse skew-hamiltonian/hamiltonian pencils. SIAM J. Sci. Comput. 22, 1905–1925
Paige C.C., Van Loan C.F. (1981): A Schur decomposition for Hamiltonian matrices. Linear Algebra Appl. 14, 11–32
Ran A.C.M., Rodman L. (1988): Stability of invariant Lagrangian subspaces I. In: Gohberg I. (eds) Operator Theory: Advances and Applications vol. 32. Birkhäuser-Verlag, Basel, pp. 181–218
Ran A.C.M., Rodman L. (1989): Stability of invariant Lagrangian subspaces II. In: Dym H.,S., Kaashoek M.A., Lancaster P. (eds) Operator Theory: Advances and Applications vol 40. Birkhäuser-Verlag, Basel, pp. 391–425
Sreedhar J., Van Dooren P. (1994): Periodic Schur forms and some matrix equations. Systems Netw. Math. Theory Appl. 77, 339–362
Stewart G.W. (1976): Simultaneous iteration for computing invariant subspaces of non Hermitian matrices. Numer. Math. 25, 123–136
Van Dooren P. (1981): A generalized eigenvalue approach for solving Riccati equations. SIAM J. Sci. Statist. Comput. 2, 121–135
Van Loan C.F. (1984): A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix. Linear Algebra Appl. 16, 233–251
Van Loan C.F. (1985): Computing the CS and the generalized singular value decomposition. Numer. Math. 46, 479–491
Watkins, D.S.: On the reduction of a hamiltonian matrix to hamiltonian schur form. Preprint, Washington State University, Pullman 2005. http://www.sci.wsu.edu/math/faculty/watkins/ refpub.html. Elect. Trans. Numer. Anal. 23, 141–157 (2006)
Xu, H.: Solving algebraic Riccati equations via Skew-Hamiltonian matrices. PhD thesis, Inst. of Math., Fudan University, Shanghai (1993)
Xu H., Lu L. (1995): Properties of a quadratic matrix equation and the solution of the continuous-time algebraic Riccati equation. Linear Algebra Appl. 222, 127–146
Zhou K., Doyle J.C., Glover K. (1995): Robust and Optimal Control. Prentice-Hall, Upper Saddle River
Author information
Authors and Affiliations
Corresponding author
Additional information
Volker Mehrmann was supported by Deutsche Forschungsgemeinschaft, Research Grant Me 790/11-3.
Rights and permissions
About this article
Cite this article
Chu, D., Liu, X. & Mehrmann, V. A numerical method for computing the Hamiltonian Schur form. Numer. Math. 105, 375–412 (2007). https://doi.org/10.1007/s00211-006-0043-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-006-0043-0