Abstract
We consider the use of a class of constraint preconditioners for the application of the Krylov subspace iterative method to the solution of large nonsymmetric, indefinite linear systems. The eigensolution distribution of the preconditioned matrix is determined and the convergence behavior of a Krylov subspace method such as GMRES is described. The choices of the parameter matrices and the implementation of the preconditioning step are discussed. Numerical experiments are presented.
Similar content being viewed by others
References
Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numerica. 14, 1–137 (2005)
Cao, Z.H.: A note on constraint preconditioning for nonsymmetric indefinite matrices. SIAM J. Matrix Anal. Appl. 24, 121–125 (2002) (electronic)
Dollar, H.S., Wathen, A.J.: Incomplete factorization constraint precondiotioners for saddle point matrices. Technical report, NA-04/01, Oxford University Computing Laboratory, Numerical Analysis Group, 2004
Dollar, H.S., Gould, N.I., Wathen, A.J.: On implicit-factorization constraint precondiotioners. Technical report, RAL-TR-2004-036, Rutherford Appleton Laboratory Oxfordshire, England, 2004
Elman, H.C.: Preconditioning for the steady-state Navier-Stokes equations with low viscosity. SIAM J. Sci. Comput. 20, 1299–1316 (1999)
Keller, C., Gould, N.I.M., Wathen, A.J.: Constraint preconditioning for indefinite linear systems. SIAM J. Matrix Anal. Appl. 21, 1300–1317 (2000) (electronic)
Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21, 1969–1972 (2000) (electronic)
Gould, N.I.M., Hribar, M.E., Nocedal, J.: On the solution of equality constrained quadratic programming problems arising in optimization. SIAM J. Sci. Comput. 23, 1376–1395 (2001)
Saad, Y.: Iterative methods for sparse linear systems. PWS Publishing Company, Boston, 1996
Saad, Y., Schultz, M.H.: GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)
Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Stat. Comput. 14, 461–469 (1993)
Van de Vorst, H.A.: Iterative Krylov methods for large systems. Cambridge University Press, Cambridge, United Kingdom, 2003
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by NSFC Projects 10171021 and 10471027.
Rights and permissions
About this article
Cite this article
Cao, ZH. A class of constraint preconditioners for nonsymmetric saddle point matrices. Numer. Math. 103, 47–61 (2006). https://doi.org/10.1007/s00211-006-0675-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-006-0675-0