Skip to main content
Log in

A class of constraint preconditioners for nonsymmetric saddle point matrices

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the use of a class of constraint preconditioners for the application of the Krylov subspace iterative method to the solution of large nonsymmetric, indefinite linear systems. The eigensolution distribution of the preconditioned matrix is determined and the convergence behavior of a Krylov subspace method such as GMRES is described. The choices of the parameter matrices and the implementation of the preconditioning step are discussed. Numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numerica. 14, 1–137 (2005)

    Article  MathSciNet  Google Scholar 

  2. Cao, Z.H.: A note on constraint preconditioning for nonsymmetric indefinite matrices. SIAM J. Matrix Anal. Appl. 24, 121–125 (2002) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dollar, H.S., Wathen, A.J.: Incomplete factorization constraint precondiotioners for saddle point matrices. Technical report, NA-04/01, Oxford University Computing Laboratory, Numerical Analysis Group, 2004

  4. Dollar, H.S., Gould, N.I., Wathen, A.J.: On implicit-factorization constraint precondiotioners. Technical report, RAL-TR-2004-036, Rutherford Appleton Laboratory Oxfordshire, England, 2004

  5. Elman, H.C.: Preconditioning for the steady-state Navier-Stokes equations with low viscosity. SIAM J. Sci. Comput. 20, 1299–1316 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Keller, C., Gould, N.I.M., Wathen, A.J.: Constraint preconditioning for indefinite linear systems. SIAM J. Matrix Anal. Appl. 21, 1300–1317 (2000) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  7. Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21, 1969–1972 (2000) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gould, N.I.M., Hribar, M.E., Nocedal, J.: On the solution of equality constrained quadratic programming problems arising in optimization. SIAM J. Sci. Comput. 23, 1376–1395 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Saad, Y.: Iterative methods for sparse linear systems. PWS Publishing Company, Boston, 1996

  10. Saad, Y., Schultz, M.H.: GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Stat. Comput. 14, 461–469 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Van de Vorst, H.A.: Iterative Krylov methods for large systems. Cambridge University Press, Cambridge, United Kingdom, 2003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-H. Cao.

Additional information

This work is supported by NSFC Projects 10171021 and 10471027.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, ZH. A class of constraint preconditioners for nonsymmetric saddle point matrices. Numer. Math. 103, 47–61 (2006). https://doi.org/10.1007/s00211-006-0675-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0675-0

Keywords

AMS classifications