Skip to main content
Log in

An a priori error estimate for a monotone mixed finite-element discretization of a convection–diffusion problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We present a local exponential fitting hybridized mixed finite-element method for convection–diffusion problem on a bounded domain with mixed Dirichlet Neuman boundary conditions. With a new technique that interpretes the algebraic system after static condensation as a bilinear form acting on certain lifting operators we prove an a priori error estimate on the Lagrange multipliers that requires minimal regularity. While an extension of more classical arguments provide an estimate for the other solution components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold D. and Brezzi F. (1977). Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér 19: 7–32

    MathSciNet  Google Scholar 

  2. Bank R.E., Rose D.J. and Fichtner W. (1983). Numerical methods for semiconductor device simulation. IEEE Trans. Electr. Dev. ED-30: 1031–1041

    Article  Google Scholar 

  3. Bank R.E., Burgler J.F., Fichtner W. and Smith R.K. (1990). Some upwinding techniques for finite element approximation of convection–diffusion equations. Numer. Math. 58: 185–202

    Article  MATH  MathSciNet  Google Scholar 

  4. Brezzi F. and Fortin M. (1991). Mixed and Hybrid Finite Element Methods. Springer, Heidelberg

    MATH  Google Scholar 

  5. Brezzi, F., Marini, L., Micheletti, S., Pietra, P., Sacco, R., Wang, S.: Discretization of semiconductor device problems (I). In: Schilders, W.H.A., Maten, E.J.W. (eds.) Handbook of Numerical Analysis, vol. XIII (Numerical Methods for Electrodynamical Problems). Elsevier Science, Amsterdam (2005)

  6. Brezzi F., Marini L.D. and Pietra P. (1989). Two-dimensional exponential fitting and applications to drift-diffusion models. SIAM J. Numer. Anal. 26(6): 1342–1355

    Article  MATH  MathSciNet  Google Scholar 

  7. Brezzi F., Marini L.D. and Pietra P. (1989). Numerical simulation of semiconductor devices. Comp. Meth. Appl. Mech. Eng. 75(1–3): 493–514

    Article  MATH  MathSciNet  Google Scholar 

  8. Ciarlet P.G. (1978). The finite element method for elliptic problems. North-Holland, Amsterdam

    MATH  Google Scholar 

  9. Cockburn B. and Gopalakrishnan J. (2004). A characterization of hybridized mixed methods for second order elliptic problems. SIAM J. Numer. Anal. 42(1): 283–301

    Article  MATH  MathSciNet  Google Scholar 

  10. Cockburn B. and Gopalakrishnan J. (2005). Error analysis of variable degree mixed methods for elliptic problems via hybridization. Math. Comp. 74: 1653–1677

    Article  MATH  MathSciNet  Google Scholar 

  11. Crouzeix M. and Raviart P.A. (1973). Conforming and nonconforming finite element methods for solving the stationary Stokes equation. RAIRO 7: 33–76

    MathSciNet  Google Scholar 

  12. Degond P., Jüngel A. and Pietra P. (2000). Numerical discretization of energy-transport model for semiconductors with non-parabolic band structure. SIAM J. Sci. Comp. 22: 986–1007

    Article  MATH  Google Scholar 

  13. Ern A. and Guermond J.-L. (2004). Theory and Practice of Finite Elements. Springer, Heidelberg

    MATH  Google Scholar 

  14. Gilbarg D. and Trudinger N.S. (2001). Elliptic partial differential equations of second order. Springer, Heidelberg

    MATH  Google Scholar 

  15. Grisvard P. (1992). Singularities in Boundary Value Problems. Springer, Heidelberg

    MATH  Google Scholar 

  16. Gopalakrishnan J. (2003). A Schwartz Preconditioner for a hybridized mixed method. Comp. Meth. Appl. Math. 3(1): 116–134

    MATH  MathSciNet  Google Scholar 

  17. Holst S., Jüngel A. and Pietra P. (2003). Numerical simulation of field-effect transistors using the energy-transport model. SIAM J. Sci. Comp. 24: 2058–2075

    Article  MATH  Google Scholar 

  18. Holst S., Jüngel A. and Pietra P. (2004). An adaptive mixed scheme for energy-transport simulations of field-effect transistors. SIAM J. Sci. Comp. 25(5): 1698–1716

    Article  MATH  Google Scholar 

  19. Hoppe R. and Wohlmuth B. (1999). A comparison of a posteriori error estimators for mixed finite element discretization by Raviart–Thomas elements. Math. Comp. 68: 1347–1378

    Article  MATH  MathSciNet  Google Scholar 

  20. Hoteit H., Mosé R., Philippe B., Ackerer Ph. and Erhel J. (2002). The maximum principle violations of the mixed-hybrid finite-element method applied to diffusion equations. Int. J. Numer. Methods Eng. 55(12): 1373–1390

    Article  MATH  Google Scholar 

  21. Jüngel A. and Pietra P. (1997). A discretization scheme of a quasi-hydrodynamic semiconductor model. Math. Models Meth. Appl. Sci. 7: 935–955

    Article  MATH  Google Scholar 

  22. Micheletti S., Sacco R. and Saleri F. (2001). On some mixed finite element methods with numerical integration. SIAM J. Sci. Comp. 23(1): 245–270

    Article  MATH  MathSciNet  Google Scholar 

  23. Nicaise, S.: Polynomial interface problems. Peter Lang, Frankfurt am Main (1993)

  24. Marini L.D. and Pietra P. (1989). An abstract theory for mixed approximations of second order elliptic equations. Mat. Aplic. Comp. 8: 219–239

    MATH  MathSciNet  Google Scholar 

  25. Marini L.D. and Pietra P. (1990). New mixed finite element schemes for current continuity equations. COMPEL 9: 257–268

    MATH  MathSciNet  Google Scholar 

  26. Polak, S.J., Schilders, W.H.A., Couperus, H.: A finite element method with current conservation. Proc. SISDEP Conf. Bologna 453–462 (1988)

  27. Noyen R.R.P. (1995). A Petrov–Galerkin mixed finite element method with exponential fitting. Numer. Meth. Part. Differ. Eq. 11(5): 501–524

    Article  Google Scholar 

  28. Sacco R. and Saleri F. (1997). Stabilized mixed finite volume methods for convection–diffusion problems. East West J. Numer. Math. 5(4): 291–311

    MATH  MathSciNet  Google Scholar 

  29. Scharfetter D. and Gummel H.K. (1969). Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Elec. Dev. Ed 16: 64–77

    Article  Google Scholar 

  30. Wang S. and Angermann L. (2003). On convergence of the exponentially fitted finite volume method with an anisotropic mesh refinement for a singularly perturbed convection–diffusion equation. Comp. Meth. Appl. Math. 3: 493–512

    MATH  MathSciNet  Google Scholar 

  31. Xu J. and Zikatanov L. (1999). A monotone finite element method for convection–diffusion equations. Math. Comp. 68(228): 149–1446

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Holst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holst, S. An a priori error estimate for a monotone mixed finite-element discretization of a convection–diffusion problem. Numer. Math. 109, 101–119 (2008). https://doi.org/10.1007/s00211-007-0097-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0097-7

Mathematics Subject Classification (2000)

Navigation