Skip to main content
Log in

A fourth-order numerical method for the planetary geostrophic equations with inviscid geostrophic balance

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The planetary geostrophic equations with inviscid balance equation are reformulated in an alternate form, and a fourth-order finite difference numerical method of solution is proposed and analyzed in this article. In the reformulation, there is only one prognostic equation for the temperature field and the velocity field is statically determined by the planetary geostrophic balance combined with the incompressibility condition. The key observation is that all the velocity profiles can be explicitly determined by the temperature gradient, by utilizing the special form of the Coriolis parameter. This brings convenience and efficiency in the numerical study. In the fourth-order scheme, the temperature is dynamically updated at the regular numerical grid by long-stencil approximation, along with a one-sided extrapolation near the boundary. The velocity variables are recovered by special solvers on the 3-D staggered grid. Furthermore, it is shown that the numerical velocity field is divergence-free at the discrete level in a suitable sense. Fourth order convergence is proven under mild regularity requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson C., Reider M. (1996). A high order explicit method for the computation of flow about a circular cylinder. J. Comput. Phys. 125: 207–224

    Article  MATH  MathSciNet  Google Scholar 

  2. Cao C.-S., Titi E. (2003). Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model. Commun. Pure Appl. Math. 56: 198–233

    Article  MATH  MathSciNet  Google Scholar 

  3. Charney J.G. (1947). The dynamics of long waves in a baraclinic westerly current. J. Meteorol. 47: 135–163

    MathSciNet  Google Scholar 

  4. Colin de Verdiere A. (1986). On mean flow instabilities within the planetary geostrophic equations. J. Phys. Oceanogr. 16: 1981–1984

    Article  Google Scholar 

  5. Dukowicz J., Smith R., Malone R. (1993). A reformulation and implementation of the bryan-cox-semtner ocean model on the connection machine. J. Atmos. Ocean. Technol. 10: 195–208

    Article  Google Scholar 

  6. E W., Liu J.-G. (1996). Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 126: 122–138

    Article  MATH  MathSciNet  Google Scholar 

  7. Harlow F.H., Welch J.E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8: 2182–2189

    Article  MATH  Google Scholar 

  8. Henshaw W., Kreiss H., Reyna L. (1994). A fourth-order accurate difference approximation for the incompressible Navier–Stokes equations. Comput. Fluids 23: 575–593

    Article  MATH  MathSciNet  Google Scholar 

  9. Lions J.L., Temam R., Wang S. (1992). New formulations of the primitive equations of the atmosphere and applications. Nonlinearity 5: 237–288

    Article  MATH  MathSciNet  Google Scholar 

  10. Liu J.-G., Samelson R., Wang C. (2006). Global weak solution of planetary geostrophic equations with inviscid geostrophic balance. Appl. Anal. 85: 593–606

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu J.-G., Wang C., Johnston H. (2003). A fourth order scheme for incompressible Boussinesq equations. J. Sci. Comput. 18(2): 253–285

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu J.-G., Wang W.-C. (2001). An energy-preserving MAC-Yee scheme for the incompressible MHD equation. J. Comput. Phys. 174: 12–37

    Article  MATH  MathSciNet  Google Scholar 

  13. Pedlosky J. (1984). The equations for geostrophic motion in the ocean. J. Phys. Oceanogr. 14: 448–455

    Article  Google Scholar 

  14. Pedlosky J. (1987). Geophysical Fluid Dynamics, 2nd edn.  Springer, New York

    Google Scholar 

  15. Phillips N.A. (1963). Geostrophic motion. Rev. Geophys. 1: 123–176

    Google Scholar 

  16. Robinson A., Stommel H. (1959). The oceanic thermocline and associated thermohaline circulation. Tellus 11: 295–308

    Google Scholar 

  17. Salmon R. (1990). The thermocline as an “internal boundary layer”. J. Mar. Res. 48: 437–469

    MathSciNet  Google Scholar 

  18. Samelson R., Temam R., Wang C., Wang S. (2003). Surface pressure Poisson equation formulation of the primitive equations: Numerical schemes. SIAM J. Numer. Anal. 41: 1163–1194

    Article  MATH  MathSciNet  Google Scholar 

  19. Samelson R., Temam R., Wang S. (1998). Some mathematical properties of the planetary geostrophic equations for large scale ocean circulation. Appl. Anal. 70: 147–173

    Article  MATH  MathSciNet  Google Scholar 

  20. Samelson R., Temam R., Wang S. (2000). Remarks on the planetary geostrophic model of grye scale ocean circulation. Differ. Integral Equ. 13: 1–14

    MATH  MathSciNet  Google Scholar 

  21. Samelson R., Vallis G. (1997). A simple friction and diffusion scheme for planetary geostrophic basin models. J. Phys. Oceanogr. 27: 186–194

    Article  Google Scholar 

  22. Smith R., Dukowicz J., Malone R. (1992). Parallel ocean general circulation modeling. Phys. D 60: 38–61

    Article  MATH  Google Scholar 

  23. Stommel H., Webster J. (1962). Some properties of the thermocline equations in a subtropical gyre. J. Mar. Res. 44: 695–711

    Google Scholar 

  24. Temam R. (1984). Navier–Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam

    MATH  Google Scholar 

  25. Wang, C.: The primitive equations formulated in mean vorticity, Discrete and Continuous Dynamical Systems. In: Proceedings of International Conference on Dynamical Systems and Differential Equations, pp. 880–887 (2003)

  26. Wang C. (2004). Convergence analysis of the numerical method for the primitive equations formulated in mean vorticity on a Cartesian grid. Discret. Contin. Dynam. Syst. Ser. B 4: 1143–1172

    MATH  Google Scholar 

  27. Wang C., Liu J.-G. (2002). Analysis of finite difference schemes for unsteady Navier–Stokes equations in vorticity formulation. Numer. Math. 91: 543–576

    Article  MATH  MathSciNet  Google Scholar 

  28. Wang C., Liu J.-G., Johnston H. (2004). Analysis of a fourth order finite difference method for incompressible Boussinesq equations. Numer. Math. 97: 555–594

    Article  MATH  MathSciNet  Google Scholar 

  29. Welander P. (1959). An advective model of the ocean thermocline. Tellus 11: 309–318

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Additional information

R. Samelson was supported by NSF grant OCE04-24516 and Navy ONR grant N00014-05-1-0891.

R. Temam was supported by NSF grant DMS-0604235 and the research fund of Indiana University.

S. Wang was supported by NSF grant DMS-0605067 and Navy ONR grant N00014-05-1-0218.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samelson, R., Temam, R., Wang, C. et al. A fourth-order numerical method for the planetary geostrophic equations with inviscid geostrophic balance. Numer. Math. 107, 669–705 (2007). https://doi.org/10.1007/s00211-007-0104-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0104-z

Mathematics Subject Classification (2000)

Navigation