Abstract
In this paper we develop adaptive numerical solvers for certain nonlinear variational problems. The discretization of the variational problems is done by a suitable frame decomposition of the solution, i.e., a complete, stable, and redundant expansion. The discretization yields an equivalent nonlinear problem on the space of frame coefficients. The discrete problem is then adaptively solved using approximated nested fixed point and Richardson type iterations. We investigate the convergence, stability, and optimal complexity of the scheme. A theoretical advantage, for example, with respect to adaptive finite element schemes is that convergence and complexity results for the latter are usually hard to prove. The use of frames is further motivated by their redundancy, which, at least numerically, has been shown to improve the conditioning of the discretization matrices. Also frames are usually easier to construct than Riesz bases. We present a construction of divergence-free wavelet frames suitable for applications in fluid dynamics and magnetohydrodynamics.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Albukerk C., Urban K., Rempfer D. and Lumley J. (2002). Divergence-free wavelet analysis of turbulent flows. J. Sci. Comput. 1: 49–66
Barinka A., Dahmen W. and Schneider R. (2007). Fast computation of adaptive wavelet expansions. Numer. Math. 105(4): 549–589
Binev P. and DeVore R. (2004). Fast computation in adaptive tree approximation. Numer. Math. 97(2): 193–217
Binev P., Dahmen W. and DeVore R. (2004). Adaptive finite element methods with convergence rate. Numer. Math. 97: 219–268
Charina M., Meir A.J. and Schmidt P.G. (2004). Mixed velocity, stress, current, and potential boundary conditions for stationary MHD flow. Comput. Math. Appl. 48(7–8): 1181–1190
Cohen A., Dahmen W. and DeVore R. (2001). Adaptive wavelet methods for elliptic operator equations—Convergence rates. Math. Comput. 70: 27–75
Cohen A., Dahmen W. and DeVore R. (2002). Adaptive wavelet methods II: beyond the elliptic case. Found. Comput. Math. 2(3): 203–245
Cohen A., Dahmen W. and DeVore R. (2003). Adaptive methods for nonlinear variational problems. SIAM J. Numer. Anal. 41(5): 1785–1823
Cohen A., Dahmen W. and DeVore R. (2003). Sparse evaluation of compositions of functions using multiscale expansions. SIAM J. Math. Anal. 35(2): 279–303
Dahlke S., Dahmen W., Hochmuth R. and Schneider R. (1997). Stable multiscale bases and local error estimation for elliptic problems. Appl. Numer. Math. 23: 21–48
Dahlke S., Fornasier M. and Raasch T. (2007). Adaptive frame methods for elliptic operator equations. Adv. Comput. Math. 27(1): 27–63
Dahlke, S., Fornasier, M., Primbs, M., Raasch, T., Werner, M.: Nonlinear and adaptive frame approximation schemes for elliptic PDEs: theory and numerical experiments. Bericht Nr. 2007-7, Philipps-Universität Marburg (2007)
Dahlke S., Fornasier M., Raasch T., Stevenson R. and Werner M. (2007). Adaptive frame methods for elliptic operator equations: the steepest descent approach. IMA J. Numer. Anal. 27(4): 717–740
Dahmen W., Klint T. and Urban K. (1996). On fictitious domain formulations for Maxwell’s equations. Found. Comput. Math. 3: 135–143
Dahmen W., Kunoth A. and Urban K. (1999). Biorthogonal spline wavelets on the interval—stability and moment conditions. Appl. Comput. Harmon. Anal. 6: 132–196
Dahmen W. and Schneider R. (1999). Composite wavelet bases for operator equations. Math. Comput. 68: 1533–1567
Dahmen W. and Schneider R. (1999). Wavelets on manifolds I. Construction and domain decomposition. SIAM J. Math. Anal. 31: 184–230
Dahmen W., Schneider R. and Xu Y. (2000). Nonlinear functionals of wavelet expansions—adaptive reconstruction and fast evaluation. Numer. Math. 86(1): 49–101
Dahmen, W., Vorloeper, J., Urban, K.: Adaptive wavelet methods—basic concepts and applications to the Stokes problem. In: Zhou, D.-X. (ed.) Proceedings of the International Conference of Computational Harmonic Analysis, World Scientific, pp.39–80 (2002)
Davis G., Mallat S. and Avellaneda M. (1997). Adaptive greedy approximations. Constr. Approx. 13(1): 57–98
DeVore R. (1998). Nonlinear approximation. Acta Numer. 7: 51–150
Dörfler W. (1996). A convergent adaptive algorithm for Poisson’s equations. SIAM J. Numer. Anal. 33: 1106–1124
Fornasier M. and Gröchenig K. (2005). Intrinsic localization of frames. Constr. Approx. 22: 395–415
Girault V. and Raviart P.-A. (1986). Finite Element Approximation of the Navier–Stokes equations, Theory and Algorithms. Springer, New York
Gribonval R. and Vandergheynst P. (2006). On the exponential convergence of matching pursuits in quasi-coherent dictionaries. IEEE Trans. Inform. Theory 52(1): 255–262
Gröchenig K. (2000). Foundations of Time–Frequency Analysis. Birkhäuser, Basel
Hackbusch W. (1992). Elliptic Differential Equations. Springer, Heidelberg
Kato T., Mitrea M., Ponce G. and Taylor M. (2000). Extension and representation of divergence-free vector fields on bounded domains. Math. Res. Lett. 7: 643–650
Mallat S. and Zhang Z. (1993). Matching pursuits with time–frequency dictionaries. IEEE Trans. Signal Process. 41(12): 3397–3415
Meir A.J. and Schmidt P.G. (1999). Analysis and numerical approximation of a stationary MHD flow problem with nonideal boundary. SIAM J. Numer. Anal. 36: 1304–1332
Mitrea, D.: On the extension of divergence-free vector fields across Lipschitz interfaces. In: Proceedings of the Integral Methods for Science and Engineering Conference (2006)
Morin P., Nochetto R.H. and Siebert K.G. (2002). Convergence of adaptive finite element methods. SIAM Rev. 44: 631–658
Oswald, P.: Frames and space splittings in Hilbert spaces. Survey lectures on multilevel schemes for elliptic problems in Sobolev spaces, http://www.faculty.iu-bremen.de/poswald/bonn1.pdf (1997)
Oswald, P.: Multilevel frames and Riesz bases in Sobolev spaces. Survey lectures on multilevel schemes for elliptic problems in Sobolev spaces, http://www.faculty.iu-bremen.de/poswald/bonn2.pdf (1997)
Stevenson R. (2003). Adaptive solution of operator equations using wavelet frames. SIAM J. Numer. Anal. 41(3): 1074–1100
Stevenson R. (2005). An optimal adaptive finite element method. SIAM J. Numer. Anal. 42(5): 2188–2217
Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math., doi:10.1007/s10208-005-0183-0 (2006)
Temlyakov V.N. (2000). Weak greedy algorithms. Adv. Comput. Math. 12(2–3): 213–227
Tropp J.A. (2004). Greedy is good: algorithmic results for sparse approximation. IEEE Trans. Inform. Theory 50(10): 2231–2242
Urban, K.: Using divergence free wavelets for the numerical solution of the Stokes problem. In: Axelsson, O., Polman, B. (eds.) Algebraic Multilevel Iterations. Nijmegen, pp. 259–278 (1986)
Urban K. (1995). On divergence-free wavelets. Adv. Comput. Math. 4: 51–82
Urban K. (2002). Wavelets in Numerical Simulation: Problem Adapted Construction and Applications. Springer, Heidelberg
Verfürth R. (1994). A posteriori error estimation and adaptive mesh-refinement techniques. J. Comp. Appl. Math. 50: 67–83
Werner, M.: Adaptive Frame-Verfahren für elliptische Randwertprobleme. Master thesis, Fachbereich Mathematik und Informatik, Philipps-Universität Marburg (2005)
Author information
Authors and Affiliations
Corresponding author
Additional information
M. Fornasier acknowledges the financial support provided through the Intra-European Individual Marie Curie Fellowship Programme, under contract MOIF-CT-2006-039438. All of the authors acknowledge the hospitality of Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università di Roma “La Sapienza”, Italy, during the early preparation of this work. The authors want to thank Daniele Boffi, Dorina Mitrea, and Karsten Urban for the helpful and fruitful discussions on divergence-free function spaces.
Rights and permissions
About this article
Cite this article
Charina, M., Conti, C. & Fornasier, M. Adaptive frame methods for nonlinear variational problems. Numer. Math. 109, 45–75 (2008). https://doi.org/10.1007/s00211-007-0127-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-007-0127-5